Hyperactivation of the silencing proteins, Sir2p and Sir3p, causes chromosome loss. 1997

S G Holmes, and A B Rose, and K Steuerle, and E Saez, and S Sayegh, and Y M Lee, and J R Broach
Department of Molecular Biology, Princeton University, New Jersey 08544, USA.

The SIRgene products maintain transcriptional repression at the silent mating type loci and telomeres in Saccharomyces cerevisiae, although no enzymatic or structural activity has been assigned to any of the Sir proteins nor has the role of any of these proteins in transcriptional silencing been clearly defined. We have investigated the functions and interactions of the Sir2, Sir3, and Sir4 proteins by overexpressing them in yeast cells. We find that Sir2p and Sir3p are toxic when overexpressed, while high Sir4p levels have no toxic effect. Epistasis experiments indicate that Sir2p-induced toxicity is diminished in strains lacking the SIR3 gene, while both Sir2p and Sir4p are required for Sir3p to manifest its full toxic effect. In addition, the effects of Sir2 or Sir3 overexpression are exacerbated by specific mutations in the N-terminus of the histone H4 gene. These results are consistent with a model in which Sir2p, Sir3p and Sir4p function as a complex and interact with histones to modify chromatin structure. We find no evidence that toxicity from high levels of the Sir proteins results from widespread repression of transcription. Instead, we find that high levels of Sir2p and/or Sir3p cause a profound decrease in chromosome stability. These results can be appreciated in the context of the effects of Sir2p in histone acetylation and of chromatin structure on chromosome stability.

UI MeSH Term Description Entries
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D005804 Genes, Lethal Genes whose loss of function or gain of function MUTATION leads to the death of the carrier prior to maturity. They may be essential genes (GENES, ESSENTIAL) required for viability, or genes which cause a block of function of an essential gene at a time when the essential gene function is required for viability. Alleles, Lethal,Allele, Lethal,Gene, Lethal,Lethal Allele,Lethal Alleles,Lethal Gene,Lethal Genes
D006655 Histone Deacetylases Deacetylases that remove N-acetyl groups from amino side chains of the amino acids of HISTONES. The enzyme family can be divided into at least three structurally-defined subclasses. Class I and class II deacetylases utilize a zinc-dependent mechanism. The sirtuin histone deacetylases belong to class III and are NAD-dependent enzymes. Class I Histone Deacetylases,Class II Histone Deacetylases,HDAC Proteins,Histone Deacetylase,Histone Deacetylase Complexes,Complexes, Histone Deacetylase,Deacetylase Complexes, Histone,Deacetylase, Histone,Deacetylases, Histone
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D015534 Trans-Activators Diffusible gene products that act on homologous or heterologous molecules of viral or cellular DNA to regulate the expression of proteins. Nuclear Trans-Acting Factor,Trans-Acting Factors,Trans-Acting Factor,Trans-Activator,Transactivator,Transactivators,Factor, Nuclear Trans-Acting,Factor, Trans-Acting,Factors, Trans-Acting,Nuclear Trans Acting Factor,Trans Acting Factor,Trans Acting Factors,Trans Activator,Trans Activators,Trans-Acting Factor, Nuclear

Related Publications

S G Holmes, and A B Rose, and K Steuerle, and E Saez, and S Sayegh, and Y M Lee, and J R Broach
January 2004, Current biology : CB,
S G Holmes, and A B Rose, and K Steuerle, and E Saez, and S Sayegh, and Y M Lee, and J R Broach
November 1998, Genetics,
S G Holmes, and A B Rose, and K Steuerle, and E Saez, and S Sayegh, and Y M Lee, and J R Broach
April 2003, Nature genetics,
S G Holmes, and A B Rose, and K Steuerle, and E Saez, and S Sayegh, and Y M Lee, and J R Broach
May 1996, Molecular and cellular biology,
S G Holmes, and A B Rose, and K Steuerle, and E Saez, and S Sayegh, and Y M Lee, and J R Broach
June 2008, Developmental cell,
S G Holmes, and A B Rose, and K Steuerle, and E Saez, and S Sayegh, and Y M Lee, and J R Broach
September 1999, Current biology : CB,
S G Holmes, and A B Rose, and K Steuerle, and E Saez, and S Sayegh, and Y M Lee, and J R Broach
March 2000, Genetics,
S G Holmes, and A B Rose, and K Steuerle, and E Saez, and S Sayegh, and Y M Lee, and J R Broach
August 2000, Genetics,
S G Holmes, and A B Rose, and K Steuerle, and E Saez, and S Sayegh, and Y M Lee, and J R Broach
November 1996, The Journal of cell biology,
S G Holmes, and A B Rose, and K Steuerle, and E Saez, and S Sayegh, and Y M Lee, and J R Broach
May 1996, Genetics,
Copied contents to your clipboard!