Long-term maintenance of hematopoiesis in irradiated mice by retrovirally transduced peripheral blood stem cells. 1997

N Drize, and J Chertkov, and E Sadovnikova, and S Tiessen, and A Zander
Hematological Scientific Center, Russian Academy of Medical Science, Moscow, Russia.

Mobilized peripheral blood stem cells (PBSC) are used as a source of hematopoietic stem cells for transplantation and gene therapy. It is still unclear, however, whether the PBSC are fully equivalent to normal bone marrow hematopoietic stem cells and whether they are able to provide long-term function of transgene in reconstituted mice. In the present study, mobilized PBSC from male mice were transduced with human adenosine desaminase gene (hADA) and were used for reconstitution of lethally irradiated female mice. At 1 1/2, 3, 6, 9, and 12 months after reconstitution, the bone marrow cells were repeatedly collected from each mouse under light anesthesia and the number of colony-forming unit-spleen (CFU-S), spleen repopulating ability (SRA), and the integration of human ADA gene were studied in CFU-S-derived colonies by polymerase chain reaction (PCR) and Southern blot hybridization analyses. After 9 months, the proportion of donor CFU-S detected by PCR with a Y-chromosome-specific probe in mice reconstituted with mobilized PBSC was 75.3% +/- 6.0%, which is similar to the concentration of donor CFU-S seen after bone marrow transplantation. Similarly, there was no difference in the concentration of CFU-S in mice reconstituted with transduced mobilized PBSC or bone marrow cells. However, in both cases the CFU-S content in the bone marrow was reduced fivefold to 10-fold compared with the concentration of CFU-S in mice transplanted with nontransduced bone marrow. The SRA of CFU-S in mice reconstituted with peripheral blood and bone marrow cells was the same 1.5 months posttransplantation, but after an additional 4 months, SRA of mice reconstituted with bone marrow cells was fivefold higher as compared with those engrafted by PBSC. The integration of the human ADA gene was observed during 9 months in about 60% of studied CFU-S. The proportion of marked colonies sharply decreased 1 year following reconstitution. One to 9 individually labeled clones could be shown simultaneously by Southern blot hybridization in the same reconstituted mice during the whole period of observation. The time of clone existence was about 3 months. We conclude that long-term marrow repopulating cells mobilized into circulation by treatment with granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF) are capable of maintaining lifelong polyclonal hematopoiesis in reconstituted mice.

UI MeSH Term Description Entries
D008297 Male Males
D005260 Female Females
D006410 Hematopoiesis The development and formation of various types of BLOOD CELLS. Hematopoiesis can take place in the BONE MARROW (medullary) or outside the bone marrow (HEMATOPOIESIS, EXTRAMEDULLARY). Hematopoiesis, Medullary,Haematopoiesis,Medullary Hematopoiesis
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000243 Adenosine Deaminase An enzyme that catalyzes the hydrolysis of ADENOSINE to INOSINE with the elimination of AMMONIA. Adenosine Aminohydrolase,Aminohydrolase, Adenosine,Deaminase, Adenosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015415 Biomarkers Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, ENVIRONMENTAL EXPOSURE and its effects, disease diagnosis; METABOLIC PROCESSES; SUBSTANCE ABUSE; PREGNANCY; cell line development; EPIDEMIOLOGIC STUDIES; etc. Biochemical Markers,Biological Markers,Biomarker,Clinical Markers,Immunologic Markers,Laboratory Markers,Markers, Biochemical,Markers, Biological,Markers, Clinical,Markers, Immunologic,Markers, Laboratory,Markers, Serum,Markers, Surrogate,Markers, Viral,Serum Markers,Surrogate Markers,Viral Markers,Biochemical Marker,Biologic Marker,Biologic Markers,Clinical Marker,Immune Marker,Immune Markers,Immunologic Marker,Laboratory Marker,Marker, Biochemical,Marker, Biological,Marker, Clinical,Marker, Immunologic,Marker, Laboratory,Marker, Serum,Marker, Surrogate,Serum Marker,Surrogate End Point,Surrogate End Points,Surrogate Endpoint,Surrogate Endpoints,Surrogate Marker,Viral Marker,Biological Marker,End Point, Surrogate,End Points, Surrogate,Endpoint, Surrogate,Endpoints, Surrogate,Marker, Biologic,Marker, Immune,Marker, Viral,Markers, Biologic,Markers, Immune
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

N Drize, and J Chertkov, and E Sadovnikova, and S Tiessen, and A Zander
July 1976, Vnitrni lekarstvi,
N Drize, and J Chertkov, and E Sadovnikova, and S Tiessen, and A Zander
March 2007, Molecular therapy : the journal of the American Society of Gene Therapy,
N Drize, and J Chertkov, and E Sadovnikova, and S Tiessen, and A Zander
October 1999, British journal of haematology,
N Drize, and J Chertkov, and E Sadovnikova, and S Tiessen, and A Zander
February 2005, Gene therapy,
N Drize, and J Chertkov, and E Sadovnikova, and S Tiessen, and A Zander
October 1998, Nature medicine,
N Drize, and J Chertkov, and E Sadovnikova, and S Tiessen, and A Zander
March 2004, Molecular therapy : the journal of the American Society of Gene Therapy,
N Drize, and J Chertkov, and E Sadovnikova, and S Tiessen, and A Zander
May 1992, Proceedings of the National Academy of Sciences of the United States of America,
N Drize, and J Chertkov, and E Sadovnikova, and S Tiessen, and A Zander
January 1995, Haematologica,
N Drize, and J Chertkov, and E Sadovnikova, and S Tiessen, and A Zander
March 1999, Haematologica,
N Drize, and J Chertkov, and E Sadovnikova, and S Tiessen, and A Zander
September 2012, Stem cells (Dayton, Ohio),
Copied contents to your clipboard!