Differences between graft-versus-leukemia and graft-versus-host reactivity. I. Interaction of donor immune T cells with tumor and/or host cells. 1997

M Rocha, and V Umansky, and K H Lee, and H J Hacker, and A Benner, and V Schirrmacher
Deutsches Krebsforschungszentrum Heidelberg, Abteilung Zelluläre Immunologie, FSP Tumorimmunologie, Germany.

Graft-versus-leukemia (GVL) and Graft-versus-host (GVH) reactions were compared after systemic transfer of allogeneic antitumor immune T lymphocytes from B10.D2 (H-2d; Mls(b)) into DBA/2 (H-2d; Mis(a)) mice. Before immune cell transfer, recipient DBA/2 mice were sublethally irradiated with 5 Gy to prevent host-versus-graft reactivity. Recipients were either bearing syngeneic metastatic ESb lymphomas (GVL system) or were normal, non-tumor-bearing mice (GVH system). We previously reported that this adoptive immunotherapy protocol (ADI) had pronounced GVL activity and led to immune rejection of even advanced metastasized cancer. In this study, monoclonal antibodies were used for immunohistochemical analysis of native frozen tissue sections from either spleen or liver to distinguish donor from host cells, to differentiate between CD4 and CD8 T lymphocytes, and to stain sialoadhesin-positive macrophages at different time points after cell transfer. The kinetics of donor cell infiltration in spleen and liver differed in that the lymphoid organ was infiltrated earlier (days 1 to 5 after transfer) than the nonlymphoid organ (days 5 to 20). After reaching a peak, donor cell infiltration decreased gradually and was not detectable in the spleen after day 20 and in the liver after day 30. The organ-infiltrating donor immune cells were mostly T lymphocytes and stained positive for CD4 or CD8 T-cell markers. A remarkable GVL-associated observation was made with regard to a subset of macrophages bearing the adhesion molecule sialoadhesin (SER+ macrophages). In the livers of tumor-bearing mice, their numbers increased between days 1 and 12 after ADI by a factor greater than 30. Double-staining for donor cell marker and SER showed that the sialoadhesin-expressing macrophages were of host origin. The SER+ host macrophages from GVL livers were isolated by enzyme perfusion and rosetting 12 days after ADI, when they reached peak values of about 60 cells per liver lobule, and were tested, without further antigen addition, for their capacity to stimulate an antitumor CD8 T-cell response. The results of this immunologic analysis suggest that these cells in the liver function as scavengers of the destroyed metastases and as antigen-processing and -presenting cells for antitumor immune T cells.

UI MeSH Term Description Entries
D007156 Immunologic Memory The altered state of immunologic responsiveness resulting from initial contact with antigen, which enables the individual to produce antibodies more rapidly and in greater quantity in response to secondary antigenic stimulus. Immune Memory,Immunological Memory,Memory, Immunologic,Immune Memories,Immunologic Memories,Immunological Memories,Memory, Immune,Memory, Immunological
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007940 Leukemia L5178 An experimental lymphocytic leukemia of mice. Lymphoma L5178,L5178, Leukemia,L5178, Lymphoma
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008811 Mice, Inbred DBA An inbred strain of mouse. Specific substrains are used in a variety of areas of BIOMEDICAL RESEARCH such as DBA/1J, which is used as a model for RHEUMATOID ARTHRITIS. Mice, DBA,Mouse, DBA,Mouse, Inbred DBA,DBA Mice,DBA Mice, Inbred,DBA Mouse,DBA Mouse, Inbred,Inbred DBA Mice,Inbred DBA Mouse
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D011971 Receptors, Immunologic Cell surface molecules on cells of the immune system that specifically bind surface molecules or messenger molecules and trigger changes in the behavior of cells. Although these receptors were first identified in the immune system, many have important functions elsewhere. Immunologic Receptors,Immunologic Receptor,Immunological Receptors,Receptor, Immunologic,Receptors, Immunological

Related Publications

M Rocha, and V Umansky, and K H Lee, and H J Hacker, and A Benner, and V Schirrmacher
June 1996, Transplantation proceedings,
M Rocha, and V Umansky, and K H Lee, and H J Hacker, and A Benner, and V Schirrmacher
November 2002, International journal of hematology,
M Rocha, and V Umansky, and K H Lee, and H J Hacker, and A Benner, and V Schirrmacher
January 2022, Frontiers in immunology,
M Rocha, and V Umansky, and K H Lee, and H J Hacker, and A Benner, and V Schirrmacher
November 2004, Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation,
M Rocha, and V Umansky, and K H Lee, and H J Hacker, and A Benner, and V Schirrmacher
January 2012, Blood,
M Rocha, and V Umansky, and K H Lee, and H J Hacker, and A Benner, and V Schirrmacher
June 2002, Blood,
M Rocha, and V Umansky, and K H Lee, and H J Hacker, and A Benner, and V Schirrmacher
February 1975, Transplantation,
M Rocha, and V Umansky, and K H Lee, and H J Hacker, and A Benner, and V Schirrmacher
January 1982, Advances in experimental medicine and biology,
M Rocha, and V Umansky, and K H Lee, and H J Hacker, and A Benner, and V Schirrmacher
November 1981, Transplantation,
Copied contents to your clipboard!