Mechanisms of action of antiarrhythmic drugs: from ion channel blockage to arrhythmia termination. 1997

A O Grant
Department of Medicine, Duke University, Durham, North Carolina, USA. aog@carlin.mc.duke.edu

Over the past decade, the strategies for arrhythmia management have been in transition. Physical methods to treat arrhythmias, such as ICDs and RF ablation, have undergone considerable refinement and wider application. Ischemic heart disease and congestive heart failure have been identified as clinical situations in which antiarrhythmic drugs have a significant proarrhythmic potential. However, drugs retain an important role in arrhythmia management. Strategies to mitigate the structural and functional changes that occur in hypertrophy, ischemia, and infarction have not been thoroughly explored. Membrane ion channels and receptors are the targets for the action of currently available drugs. The cloning and sequencing of these ion channels and receptors should improve the efficacy and specificity of drug design. Cardiac Na+, Ca2+, K+, and nonspecific cation channels have a clearly defined role in the generation of the normal action potential. Their specific roles in the various clinical arrhythmias is less certain. There are sufficient data to associate specific ionic channels with normal and abnormal automaticity and with reentry occurring in specific regions of the heart. A rational choice of antiarrthymic drugs can be made when an arrhythmogenic mechanism and the putative underlying membrane currents can be identified based on the clinical characteristics of the arrhythmia. For a majority of clinical arrhythmias, this ideal has not been achieved. When a particular drug is used to treat an arrhythmia, the full complement of its actions will depend on which multiple ion channels or receptors are blocked and the kinetics of drug interaction with these sites.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000889 Anti-Arrhythmia Agents Agents used for the treatment or prevention of cardiac arrhythmias. They may affect the polarization-repolarization phase of the action potential, its excitability or refractoriness, or impulse conduction or membrane responsiveness within cardiac fibers. Anti-arrhythmia agents are often classed into four main groups according to their mechanism of action: sodium channel blockade, beta-adrenergic blockade, repolarization prolongation, or calcium channel blockade. Anti-Arrhythmia Agent,Anti-Arrhythmia Drug,Anti-Arrhythmic,Antiarrhythmia Agent,Antiarrhythmia Drug,Antiarrhythmic Drug,Antifibrillatory Agent,Antifibrillatory Agents,Cardiac Depressant,Cardiac Depressants,Myocardial Depressant,Myocardial Depressants,Anti-Arrhythmia Drugs,Anti-Arrhythmics,Antiarrhythmia Agents,Antiarrhythmia Drugs,Antiarrhythmic Drugs,Agent, Anti-Arrhythmia,Agent, Antiarrhythmia,Agent, Antifibrillatory,Agents, Anti-Arrhythmia,Agents, Antiarrhythmia,Agents, Antifibrillatory,Anti Arrhythmia Agent,Anti Arrhythmia Agents,Anti Arrhythmia Drug,Anti Arrhythmia Drugs,Anti Arrhythmic,Anti Arrhythmics,Depressant, Cardiac,Depressant, Myocardial,Depressants, Cardiac,Depressants, Myocardial,Drug, Anti-Arrhythmia,Drug, Antiarrhythmia,Drug, Antiarrhythmic,Drugs, Anti-Arrhythmia,Drugs, Antiarrhythmia,Drugs, Antiarrhythmic
D001145 Arrhythmias, Cardiac Any disturbances of the normal rhythmic beating of the heart or MYOCARDIAL CONTRACTION. Cardiac arrhythmias can be classified by the abnormalities in HEART RATE, disorders of electrical impulse generation, or impulse conduction. Arrhythmia,Arrythmia,Cardiac Arrhythmia,Cardiac Arrhythmias,Cardiac Dysrhythmia,Arrhythmia, Cardiac,Dysrhythmia, Cardiac
D015640 Ion Channel Gating The opening and closing of ion channels due to a stimulus. The stimulus can be a change in membrane potential (voltage-gated), drugs or chemical transmitters (ligand-gated), or a mechanical deformation. Gating is thought to involve conformational changes of the ion channel which alters selective permeability. Gating, Ion Channel,Gatings, Ion Channel,Ion Channel Gatings

Related Publications

A O Grant
January 1998, Progress in biophysics and molecular biology,
A O Grant
January 1973, Circulation research,
A O Grant
November 1993, The American journal of cardiology,
A O Grant
March 1974, American heart journal,
A O Grant
May 2001, Pacing and clinical electrophysiology : PACE,
A O Grant
September 2000, Heart (British Cardiac Society),
A O Grant
March 2000, Pacing and clinical electrophysiology : PACE,
A O Grant
July 1984, Journal of clinical pharmacology,
A O Grant
January 1987, Archives des maladies du coeur et des vaisseaux,
Copied contents to your clipboard!