Characterization of rat Glut4 glucose transporter expressed in the yeast Saccharomyces cerevisiae: comparison with Glut1 glucose transporter. 1997

T Kasahara, and M Kasahara
Laboratory of Biophysics, School of Medicine, Teikyo University, Tokyo, Japan.

Rat Glut4 glucose transporter was expressed in the yeast Saccharomyces cerevisiae, but was retained in an intracellular membranous compartment and did not contribute to glucose uptake by intact cells. A crude membrane fraction was prepared and reconstituted in liposome with the use of the freeze-thaw/sonication method. D-glucose-specific, cytochalasin B inhibitable glucose transport activity was observed. Kinetic analysis of D-glucose transport was performed by an integrated rate equation approach. The K(m) under zero-trans influx condition was 12 +/- 1 mM (mean +/- S.E., n = 3) and that under equilibrium exchange condition was 22 +/- 3 mM (n = 4). D-glucose transport was inhibited by 2-deoxy-D-glucose or 3-O-methyl-D-glucose, but not by D-allose, D-fructose or L-glucose. Cytochalasin B, phloretin and phlorizin inhibited D-glucose transport, but neither p-chloromercuribenzoic acid (pCMB) (0-0.1 mM) nor p-chloromercuribenzene sulfonic acid (pCMBS) (0-1.0 mM) inhibited this activity. High concentrations of HgCl2 were required to inhibit D-glucose transport (IC50, 370 microM). Comparing these properties to those of rat Glut1 we found two notable differences; (1) in Glut1, K(m) under zero-trans influx was significantly smaller than that under equilibrium exchange but in Glut4 less than two-fold difference was seen between these two K(m) values; and (2) Glut1 was inhibited with pCMB, pCMBS and low concentrations of HgCl2 (IC50, 3.5 microM), whereas Glut4 was almost insensitive to SH reagents. To examine the role of the exofacial cysteine, we replaced Met-455 of Glut4 (corresponding to Cys-429 of Glut1) with cysteine. The mutated Glut4 was inhibited by pCMB or pCMBS and the IC50 of HgCl2 decreased to 47 microM, whereas K(m), substrate specificity and the sensitivity to cytochalasin B were not significantly changed, indicating that the existence of exofacial cysteine contributed only to increase SH sensitivity in Glut4.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008627 Mercuric Chloride Mercury chloride (HgCl2). A highly toxic compound that volatizes slightly at ordinary temperature and appreciably at 100 degrees C. It is corrosive to mucous membranes and used as a topical antiseptic and disinfectant. Mercury Dichloride,Corrosive Sublimate,HgCl2,Mercuric Perchloride,Mercury Bichloride,Mercury Perchloride,Sublimate,Bichloride, Mercury,Chloride, Mercuric,Dichloride, Mercury,Perchloride, Mercuric,Perchloride, Mercury,Sublimate, Corrosive
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009004 Monosaccharide Transport Proteins A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES. Hexose Transport Proteins,Band 4.5 Preactin,Erythrocyte Band 4.5 Protein,Glucose Transport-Inducing Protein,Hexose Transporter,4.5 Preactin, Band,Glucose Transport Inducing Protein,Preactin, Band 4.5,Proteins, Monosaccharide Transport,Transport Proteins, Hexose,Transport Proteins, Monosaccharide,Transport-Inducing Protein, Glucose
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010693 Phloretin A natural dihydrochalcone found in apples and many other fruits.
D010695 Phlorhizin Phloridzin,Phlorizin
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes

Related Publications

T Kasahara, and M Kasahara
April 1993, The Journal of biological chemistry,
T Kasahara, and M Kasahara
January 1992, Molecular microbiology,
T Kasahara, and M Kasahara
January 1993, Microbios,
T Kasahara, and M Kasahara
September 1995, DNA and cell biology,
T Kasahara, and M Kasahara
April 2007, Cell metabolism,
Copied contents to your clipboard!