Characterisation of a cloned human 5-HT1A receptor cell line using [35S]GTP gamma S binding. 1997

J A Stanton, and M S Beer
Merck, Sharp & Dohme Research Laboratories, Neuroscience Research Centre, Harlow, Essex, UK.

Compound potencies and efficacies depend upon receptor reserve and hence estimating this parameter in assay systems allows for a more meaningful interpretation of the data generated. This study describes a method whereby the degree of receptor reserve, with respect to 5-hydroxytryptamine (5-HT), was determined for a HeLa cell line expressing the human 5-HT1A receptor using the agonist-induced [35S]guanosine 5'[gamma-thio]triphosphate ([35S]GTP gamma S) binding assay, followed by a comparison of the potencies and relative efficacies of several compounds. Following irreversible antagonism with benextramine 5-HT yielded a pKA of 7.3, compared with a pKobs of 8.4 from saturation analysis, indicating the presence of high and low affinity state receptors. A 20% receptor occupancy elicited a half-maximal functional response consistent with the presence of receptor reserve. 5-HT, 5-carboxamidotryptamine (5-CT), 8-hydoxy-dipropylamino-tetralin (8-OH-DPAT), 5-methoxy-3-(1,2,3,6-tetrahydropyridin-4-yl)-1 H-indole (RU24969), buspirone, gepirone, mesulergine and sumatriptan were equally efficacious. 1-(2-Methoxyphenyl)-4-[4-(2-phthalimido)butyl]piperazine (NAN 190) displayed reduced relative efficacy and methiothepin inverse agonism.

UI MeSH Term Description Entries
D011869 Radioligand Assay Quantitative determination of receptor (binding) proteins in body fluids or tissue using radioactively labeled binding reagents (e.g., antibodies, intracellular receptors, plasma binders). Protein-Binding Radioassay,Radioreceptor Assay,Assay, Radioligand,Assay, Radioreceptor,Assays, Radioligand,Assays, Radioreceptor,Protein Binding Radioassay,Protein-Binding Radioassays,Radioassay, Protein-Binding,Radioassays, Protein-Binding,Radioligand Assays,Radioreceptor Assays
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D003538 Cystamine A radiation-protective agent that interferes with sulfhydryl enzymes. It may also protect against carbon tetrachloride liver damage. Cystineamine,Decarboxycystine,Diaminodiethyldisulfide,2,2'-Dithiobisethanamine,Cystamine Calcium Salt,Cystamine Diacetate,Cystamine Dihydrobromide,Cystamine Dihydrochloride,Cystamine Hydrobromide,Cystamine Hydrochloride,Cystamine Sulfate,Cystamine Sulfate (1:1),Cysteinamine Disulfide,Cystinamin,2,2' Dithiobisethanamine,Calcium Salt, Cystamine,Diacetate, Cystamine,Dihydrobromide, Cystamine,Dihydrochloride, Cystamine,Disulfide, Cysteinamine,Hydrobromide, Cystamine,Hydrochloride, Cystamine,Sulfate, Cystamine
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000317 Adrenergic alpha-Antagonists Drugs that bind to but do not activate alpha-adrenergic receptors thereby blocking the actions of endogenous or exogenous adrenergic agonists. Adrenergic alpha-antagonists are used in the treatment of hypertension, vasospasm, peripheral vascular disease, shock, and pheochromocytoma. Adrenergic alpha-Receptor Blockaders,alpha-Adrenergic Blocking Agents,alpha-Adrenergic Receptor Blockaders,alpha-Blockers, Adrenergic,Adrenergic alpha-Blockers,alpha-Adrenergic Antagonists,alpha-Adrenergic Blockers,Adrenergic alpha Antagonists,Adrenergic alpha Blockers,Adrenergic alpha Receptor Blockaders,Agents, alpha-Adrenergic Blocking,Antagonists, alpha-Adrenergic,Blockaders, Adrenergic alpha-Receptor,Blockaders, alpha-Adrenergic Receptor,Blockers, alpha-Adrenergic,Blocking Agents, alpha-Adrenergic,Receptor Blockaders, alpha-Adrenergic,alpha Adrenergic Antagonists,alpha Adrenergic Blockers,alpha Adrenergic Blocking Agents,alpha Adrenergic Receptor Blockaders,alpha Blockers, Adrenergic,alpha-Antagonists, Adrenergic,alpha-Receptor Blockaders, Adrenergic
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine
D013462 Sulfur Radioisotopes Unstable isotopes of sulfur that decay or disintegrate spontaneously emitting radiation. S 29-31, 35, 37, and 38 are radioactive sulfur isotopes. Radioisotopes, Sulfur

Related Publications

J A Stanton, and M S Beer
August 1997, Neurochemical research,
J A Stanton, and M S Beer
January 1997, Methods in molecular biology (Clifton, N.J.),
J A Stanton, and M S Beer
January 1999, Methods in molecular biology (Clifton, N.J.),
J A Stanton, and M S Beer
January 1997, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!