The abundant latency-associated transcripts of herpes simplex virus type 1 are bound to polyribosomes in cultured neuronal cells and during latent infection in mouse trigeminal ganglia. 1997

D Goldenberg, and N Mador, and M J Ball, and A Panet, and I Steiner
Department of Neurology, Hadassah University Hospital, Jerusalem, Israel.

During herpes simplex virus type 1 (HSV-1) latency, limited viral transcription takes place. This transcription has been linked to the ability of the HSV-1 genome to reactivate and consists of abundant 2.0- and 1.5-kb collinear latency-associated transcripts (LATs), spanned by minor hybridizing RNA (mLAT). The 1.5-kb LAT is derived from the 2.0-kb LAT by splicing, and both transcripts contain two large overlapping open reading frames. The molecular action mechanisms of the latency-associated gene expression are unknown, and no HSV-1 latency-encoded proteins have been convincingly demonstrated. We have cloned the entire latency-associated transcriptionally active HSV-1 DNA fragment (10.4 kb) under control of a constitutive promoter and generated a neuronal cell line (NA4) stably transfected with the viral LAT's region. NA4 cells produced the 2.0- and the 1.5-kb LATs. Northern blotting and reverse transcription-PCR analysis of RNA from NA4 cells and from trigeminal ganglia of mice latently infected with HSV-1 revealed that the two abundant LAT species were present in the polyribosomal RNA fractions. After addition of EDTA, which causes dissociation of mRNA-ribosome complexes, both LATs could be detected only in subpolyribosomal, but not in polyribosomal fractions. These results show that (i) HSV-1 LATs are bound to polyribosomes during latency in vivo, as well as in neuronal cells in vitro, and therefore might be translated, and that (ii) the NA4 cell line is a suitable tool with which to look for HSV-1 latency-encoded gene products.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011132 Polyribosomes A multiribosomal structure representing a linear array of RIBOSOMES held together by messenger RNA; (RNA, MESSENGER); They represent the active complexes in cellular protein synthesis and are able to incorporate amino acids into polypeptides both in vivo and in vitro. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Polysomes,Polyribosome,Polysome
D006561 Herpes Simplex A group of acute infections caused by herpes simplex virus type 1 or type 2 that is characterized by the development of one or more small fluid-filled vesicles with a raised erythematous base on the skin or mucous membrane. It occurs as a primary infection or recurs due to a reactivation of a latent infection. (Dorland, 27th ed.) Herpes Simplex Virus Infection
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D012668 Trigeminal Ganglion The semilunar-shaped ganglion containing the cells of origin of most of the sensory fibers of the trigeminal nerve. It is situated within the dural cleft on the cerebral surface of the petrous portion of the temporal bone and gives off the ophthalmic, maxillary, and part of the mandibular nerves. Gasserian Ganglion,Semilunar Ganglion,Gasser's Ganglion,Trigeminal Ganglia,Ganglia, Trigeminal,Ganglion, Gasser's,Ganglion, Gasserian,Ganglion, Semilunar,Ganglion, Trigeminal,Gasser Ganglion,Gassers Ganglion,Semilunar Ganglions,Trigeminal Ganglias,Trigeminal Ganglions
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D017735 Virus Latency The ability of a pathogenic virus to lie dormant within a cell (LATENT INFECTION). In eukaryotes, subsequent activation and viral replication is thought to be caused by extracellular stimulation of cellular transcription factors. Latency in bacteriophage is maintained by the expression of virally encoded repressors. Viral Latency,Latencies, Viral,Latencies, Virus,Latency, Viral,Latency, Virus,Viral Latencies,Virus Latencies
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

D Goldenberg, and N Mador, and M J Ball, and A Panet, and I Steiner
September 2011, Virology,
D Goldenberg, and N Mador, and M J Ball, and A Panet, and I Steiner
February 1989, The EMBO journal,
D Goldenberg, and N Mador, and M J Ball, and A Panet, and I Steiner
November 1989, Journal of the neurological sciences,
D Goldenberg, and N Mador, and M J Ball, and A Panet, and I Steiner
November 1990, Journal of virology,
D Goldenberg, and N Mador, and M J Ball, and A Panet, and I Steiner
September 1988, Journal of virology,
D Goldenberg, and N Mador, and M J Ball, and A Panet, and I Steiner
January 1973, Transactions of the American Neurological Association,
D Goldenberg, and N Mador, and M J Ball, and A Panet, and I Steiner
July 1991, Virology,
D Goldenberg, and N Mador, and M J Ball, and A Panet, and I Steiner
July 1990, The Journal of clinical investigation,
D Goldenberg, and N Mador, and M J Ball, and A Panet, and I Steiner
July 1992, Virology,
Copied contents to your clipboard!