Transcription of DmRP140, the gene coding for the second-largest subunit of RNA polymerase II. 1997

M Wiedemann, and I Oldenburg, and S Sitzler, and G Petersen
Institute of Molecular Genetics, University Heidelberg, Germany.

To analyze transcriptional control regions of Drosophila melanogaster housekeeping genes, we have characterized the promoter of the gene coding for the second-largest subunit of RNA polymerase II (DmRP140). Upstream of DmRP140 the genomic region harbors a gene which is transcribed in the opposite direction (DmRP140up). By determination of the transcription start sites of both genes we found a short non-transcribed intergenic region of 220 bp. Functional analysis of various promoter reportergene constructs by transient transfection of cultured cells revealed that sequences important for transcription of DmRP140 are located in the untranslated leader of the upstream gene. The onset of DmRP140 transcription during embryonic development was studied in transgenic flies using beta-galactosidase as reportergene. To distinguish between the maternally provided DmRP140 transcripts and the embryonically transcribed RNA the offspring of nontransformed females and male transformants was examined. The development of a sensitive detection assay based on a chemiluminescent substrate for beta-galactosidase allowed us to determine the onset of DmRP140 transcription to between 8-10 h after oviposition. Thus, DmRP140 transcription does not start following the transcriptional transition period between 2-3 h of development but occurs much later in embryogenesis coinciding with decreasing DNA synthesis and cell division rates.

UI MeSH Term Description Entries
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003433 Crosses, Genetic Deliberate breeding of two different individuals that results in offspring that carry part of the genetic material of each parent. The parent organisms must be genetically compatible and may be from different varieties or closely related species. Cross, Genetic,Genetic Cross,Genetic Crosses
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

M Wiedemann, and I Oldenburg, and S Sitzler, and G Petersen
February 1993, Nucleic acids research,
M Wiedemann, and I Oldenburg, and S Sitzler, and G Petersen
February 1988, The Journal of biological chemistry,
M Wiedemann, and I Oldenburg, and S Sitzler, and G Petersen
September 1990, Nucleic acids research,
M Wiedemann, and I Oldenburg, and S Sitzler, and G Petersen
January 1996, Plant molecular biology,
M Wiedemann, and I Oldenburg, and S Sitzler, and G Petersen
July 1995, Gene,
M Wiedemann, and I Oldenburg, and S Sitzler, and G Petersen
November 1989, Molecular & general genetics : MGG,
M Wiedemann, and I Oldenburg, and S Sitzler, and G Petersen
August 1992, Journal of molecular biology,
M Wiedemann, and I Oldenburg, and S Sitzler, and G Petersen
August 1992, Genetics,
M Wiedemann, and I Oldenburg, and S Sitzler, and G Petersen
October 2006, Mycological research,
Copied contents to your clipboard!