Pharmacology and mechanisms of opioid analgesic activity. 1997

T L Yaksh
Anesthesiology Research Laboratory, University of California, San Diego, USA.

Opiates by an action at specific receptors can induce a highly selective alteration in the response of humans and animals to strong and otherwise aversive chemical, mechanical or thermal stimuli. Specific investigations in a variety of species from rodent to primate using microinjection techniques to examine the pharmacology of local drug action have shown potent antinociceptive actions to be mediated by a receptor specific action at a number of sites within the brain, including the periaqueductal gray (PAG: mu receptor), the rostral ventral medulla (mu/delta receptor) and the substantia nigra (mu receptor) and within the spinal dorsal horn (mu/delta/kappa receptor). Mechanistic studies have shown these actions in the different sites to be mediated by several discrete mechanisms. For example, in the PAG, the local opiate effect is likely mediated by the indirect activation of bulbospinal pathways, rostral projections to forebrain sites and by a local alteration in afferent input into the brainstem core. In the spinal cord, this effect is mediated by an action presynaptic to the primary afferent and by a post-synaptic effect to hyperpolarize projection neurons. In addition, it is now appreciated that mu and kappa receptors in the periphery can modulate the sensitized state of the small afferent terminal innervating inflamed tissue and exert an anti-hyperalgesic action. After systemic delivery of an opiate, it is thus clear that a wide array of central and peripheral systems serve to explain the powerful analgesic effect exerted by this class of agents.

UI MeSH Term Description Entries
D007267 Injections Introduction of substances into the body using a needle and syringe. Injectables,Injectable,Injection
D010146 Pain An unpleasant sensation induced by noxious stimuli which are detected by NERVE ENDINGS of NOCICEPTIVE NEURONS. Suffering, Physical,Ache,Pain, Burning,Pain, Crushing,Pain, Migratory,Pain, Radiating,Pain, Splitting,Aches,Burning Pain,Burning Pains,Crushing Pain,Crushing Pains,Migratory Pain,Migratory Pains,Pains, Burning,Pains, Crushing,Pains, Migratory,Pains, Radiating,Pains, Splitting,Physical Suffering,Physical Sufferings,Radiating Pain,Radiating Pains,Splitting Pain,Splitting Pains,Sufferings, Physical
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000701 Analgesics, Opioid Compounds with activity like OPIATE ALKALOIDS, acting at OPIOID RECEPTORS. Properties include induction of ANALGESIA or NARCOSIS. Opioid,Opioid Analgesic,Opioid Analgesics,Opioids,Full Opioid Agonists,Opioid Full Agonists,Opioid Mixed Agonist-Antagonists,Opioid Partial Agonists,Partial Opioid Agonists,Agonist-Antagonists, Opioid Mixed,Agonists, Full Opioid,Agonists, Opioid Full,Agonists, Opioid Partial,Agonists, Partial Opioid,Analgesic, Opioid,Full Agonists, Opioid,Mixed Agonist-Antagonists, Opioid,Opioid Agonists, Full,Opioid Agonists, Partial,Opioid Mixed Agonist Antagonists,Partial Agonists, Opioid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords

Related Publications

T L Yaksh
December 1989, Nihon yakurigaku zasshi. Folia pharmacologica Japonica,
T L Yaksh
January 1996, Patologicheskaia fiziologiia i eksperimental'naia terapiia,
T L Yaksh
May 1994, The International journal of neuroscience,
T L Yaksh
January 1982, Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan,
T L Yaksh
June 2008, Yao xue xue bao = Acta pharmaceutica Sinica,
T L Yaksh
December 2012, The Journal of the American Osteopathic Association,
T L Yaksh
July 1995, Thrombosis and haemostasis,
Copied contents to your clipboard!