Influence of Asn/His L166 on the hydrogen-bonding pattern and redox potential of the primary donor of purple bacterial reaction centers. 1997

A Ivancich, and T A Mattioli
Departement de Biologie Cellulaire et Moleculaire, CEA and CNRS URA 2096, CEA/Saclay, Gif-sur-Yvette, France.

The primary electron donor (P) of the photosynthetic reaction center (RC) from the purple bacterium Rhodobacter (Rb.) sphaeroides is constituted of two bacteriochlorophyll molecules in excitonic interaction. The C2 acetyl carbonyl group of one of the two bacteriochlorophyll molecules (PL), the one more closely associated with the L polypeptide subunit, is engaged in a hydrogen bond with histidine L168, while the other pi-conjugated carbonyl groups of P are free from such hydrogen-bonding interactions. The three-dimensional X-ray crystal structures of the RC from several strains of Rb. sphaeroides reveal that asparagine L166 probably interacts indirectly with P through His L168. Such an interaction is expected to modulate the hydrogen bond between P and His L168, a residue which is highly conserved in purple bacteria. RC mutants of Rb. sphaeroides where asparagine L166 was genetically replaced by leucine [NL(L166)], histidine [NH(L166)], and aspartate [ND(L166)] were studied using Fourier transform (FT) Raman spectroscopy. All of these mutations resulted in an increase in the strength of the hydrogen bond between His L168 and the acetyl carbonyl group of P(L), as observed in the FT Raman spectrum, by the 2-4 cm(-1) decrease in vibrational frequency of the 1620 cm(-1) band which has been assigned to this specific acetyl carbonyl group [Mattioli, T. A., Lin, X., Allen, J. P., & Williams, J. C. (1995) Biochemistry 34, 6142-6152]. At pH 8, the NH(L166) mutation showed the greatest change in the P0/P.+ redox midpoint potential (515 mV), increasing it by ca. 30 mV compared to that of wild type (485 mV). A similar increase in P0/P.+ redox midpoint potential for NH(L166) compared to that of wild type is also observed at pH 5, 6, and 9.5. The p0/P.+ midpoint potential of the NL(L166) mutant was comparable to that of wild type at all pH values. In contrast, for the ND(L166) mutant, the midpoint potential shows a markedly different pH dependency, being 25 mV higher than wild type at pH 5 but 20 mV lower than wild type at pH 9.5. The hydrogen bond interactions of the primary electron donor from Rhodospirillum (Rsp.) centenum were determined from the FT Raman vibrational spectrum which exhibits a 1616 cm(-1) band similar to what is seen in the NH(L166) and ND(L166) Rb. sphaeroides mutants. Comparison of the sequence of the L subunit determined for the Rsp. centenum RC with that of other species indicates that positions L166 and L168 are occupied by His residues. The stronger hydrogen bond between the conserved His L168 and the acetyl carbonyl group of P(L), observed in the primary donor of Rsp. centenum and of several bacterial species which are known to possess a histidine residue at the analogous L166 position, is proposed to be due to interactions between these two histidine residues.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D004563 Electrochemistry The study of chemical changes resulting from electrical action and electrical activity resulting from chemical changes. Electrochemistries
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D006639 Histidine An essential amino acid that is required for the production of HISTAMINE. Histidine, L-isomer,L-Histidine,Histidine, L isomer,L-isomer Histidine
D006860 Hydrogen Bonding A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds. Hydrogen Bonds,Bond, Hydrogen,Hydrogen Bond
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001216 Asparagine A non-essential amino acid that is involved in the metabolic control of cell functions in nerve and brain tissue. It is biosynthesized from ASPARTIC ACID and AMMONIA by asparagine synthetase. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed) L-Asparagine

Related Publications

A Ivancich, and T A Mattioli
June 2004, Journal of the American Chemical Society,
A Ivancich, and T A Mattioli
September 1987, Photosynthesis research,
A Ivancich, and T A Mattioli
May 2014, Chemistry (Weinheim an der Bergstrasse, Germany),
Copied contents to your clipboard!