Synthesis, characterization, cytotoxic, and DNA binding studies of some platinum (II) complexes of 1,2-diamine and alpha-diimine with 2-pyridinecarboxylate anion. 1996

A K Paul, and T S Srivastava, and S J Chavan, and M P Chitnis, and S Desai, and K K Rao
Department of Chemistry, Indian Institute of Technology, Bombay, India.

Seven new water-soluble cationic complexes of general formula [Pt(2-pyc)(N-N)]+ (where N-N is 2NH3, ethylenediamine (en), 1,2-diaminopropane (1,2-dap), 1,3-diaminopropane (1,3-dap), (+/-) trans-1,2-diaminocyclohaxane (dach), 2,2'-dipyridylamine (dpa) or 1,10-phenanthroline (phen), and 2-pyridinecarboxylate anion) have been prepared. These complexes have been characterized by conductance measurements, and by ultraviolet-visible, infrared (IR), and 1H nuclear magnetic resonance (NMR) spectroscopy. The COSY (correlated spectroscopy) spectra of [Pt(2-pyc)(dpa)]+ and [Pt(2-pys)(dpa)]+ further support the structures of the above complexes with three nitrogen and one oxygen donor atoms in the first coordination sphere of platinum(II) with 1,2-diamine or alpha-diimine and 2-pyridinecarboxylate anion behaving as bidentate ligands. One of the compounds, [Pt(2-pyc)(dpa)]Cl, also shows a birefringence property in water. These compounds inhibit the growth of P388 lymphocytic leukemia cells. [Pt(2-pyc)(dpa)]+ shows I.D.50 value comparable to cisplatin. However, six other complexes show higher I.D.50 values than cisplatin. In addition, the inhibition studies also suggest that their target is DNA. Therefore, the interactions of four of the above complexes with calf thymus DNA have been studied by ultraviolet and fluorescence spectral methods. These studies suggest that [Pt(2-pyc)(NH3)2]+ and [Pt(2-pyc)(1,2-dap)+ bind to DNA by noncovalent interactions. On the other hand, [Pt(2-pyc)(dpa)]+ and [Pt(2-pyc)(phen)]+ bind to DNA by covalent monofunctional binding. The latter two complexes have also been interacted with PUC19 DNA. The gel electrophoresis studies of these interactions suggest that these complexes bind to DNA, and this binding leads to a conformational change in DNA.

UI MeSH Term Description Entries
D007097 Imines Organic compounds containing a carbon-nitrogen double bond where a NITROGEN atom can be attached to HYDROGEN or an alkyl or aryl group. Imine
D007945 Leukemia, Lymphoid Leukemia associated with HYPERPLASIA of the lymphoid tissues and increased numbers of circulating malignant LYMPHOCYTES and lymphoblasts. Leukemia, Lymphocytic,Lymphocytic Leukemia,Lymphoid Leukemia,Leukemias, Lymphocytic,Leukemias, Lymphoid,Lymphocytic Leukemias,Lymphoid Leukemias
D009942 Organometallic Compounds A class of compounds of the type R-M, where a C atom is joined directly to any other element except H, C, N, O, F, Cl, Br, I, or At. (Grant & Hackh's Chemical Dictionary, 5th ed) Metallo-Organic Compound,Metallo-Organic Compounds,Metalloorganic Compound,Organometallic Compound,Metalloorganic Compounds,Compound, Metallo-Organic,Compound, Metalloorganic,Compound, Organometallic,Compounds, Metallo-Organic,Compounds, Metalloorganic,Compounds, Organometallic,Metallo Organic Compound,Metallo Organic Compounds
D010984 Platinum A heavy, soft, whitish metal, resembling tin, with atomic number 78, atomic weight 195.084, symbol Pt. It is used in manufacturing equipment for laboratory and industrial use. It occurs as a black powder (platinum black) and as a spongy substance (spongy platinum) and may have been known in Pliny's time as "alutiae". Platinum Black
D011725 Pyridines Compounds with a six membered aromatic ring containing NITROGEN. The saturated version is PIPERIDINES.
D002264 Carboxylic Acids Organic compounds containing the carboxy group (-COOH). This group of compounds includes amino acids and fatty acids. Carboxylic acids can be saturated, unsaturated, or aromatic. Carboxylic Acid,Acid, Carboxylic,Acids, Carboxylic
D003959 Diamines Organic chemicals which have two amino groups in an aliphatic chain. Diamine
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000838 Anions Negatively charged atoms, radicals or groups of atoms which travel to the anode or positive pole during electrolysis. Anion
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy

Related Publications

A K Paul, and T S Srivastava, and S J Chavan, and M P Chitnis, and S Desai, and K K Rao
December 1991, Journal of inorganic biochemistry,
A K Paul, and T S Srivastava, and S J Chavan, and M P Chitnis, and S Desai, and K K Rao
February 1991, Journal of inorganic biochemistry,
A K Paul, and T S Srivastava, and S J Chavan, and M P Chitnis, and S Desai, and K K Rao
May 1988, Journal of inorganic biochemistry,
A K Paul, and T S Srivastava, and S J Chavan, and M P Chitnis, and S Desai, and K K Rao
December 2001, Chemical & pharmaceutical bulletin,
A K Paul, and T S Srivastava, and S J Chavan, and M P Chitnis, and S Desai, and K K Rao
April 2009, Journal of biomolecular structure & dynamics,
A K Paul, and T S Srivastava, and S J Chavan, and M P Chitnis, and S Desai, and K K Rao
January 2008, Journal of inorganic biochemistry,
A K Paul, and T S Srivastava, and S J Chavan, and M P Chitnis, and S Desai, and K K Rao
October 2017, Bioorganic chemistry,
A K Paul, and T S Srivastava, and S J Chavan, and M P Chitnis, and S Desai, and K K Rao
May 2017, Journal of fluorescence,
A K Paul, and T S Srivastava, and S J Chavan, and M P Chitnis, and S Desai, and K K Rao
October 2009, Inorganic chemistry,
A K Paul, and T S Srivastava, and S J Chavan, and M P Chitnis, and S Desai, and K K Rao
August 2010, Journal of enzyme inhibition and medicinal chemistry,
Copied contents to your clipboard!