[Cardiovascular effects of thyroid hormones]. 1996

S Mohr-Kahaly, and G Kahaly, and J Meyer
II. Medizinische Universitätsklinik und Poliklinik, Mainz.

The heart is a major target organ for thyroid hormone action, and marked changes occur in cardiac function in patients with hypothyroidism or hyperthyroidism. Triiodothyronine (T3)-induced changes in cardiac function can result from direct or indirect T3 effects. Direct T3 effects result from T3 action in the heart itself and are mediated by nuclear or extranuclear mechanisms. Extranuclear T3 effects, which occur independently of nuclear T3 receptor binding and increases in protein synthesis, influence primarily the transport of amino acids, sugars, and calcium across the cell membrane. Nuclear T3 effects are mediated by the binding of T3 to specific nuclear receptor proteins, which results in increased transcription of T3-responsive cardiac genes. The T3 receptor is a member of the ligand-activated transcription factor family and is encoded by cellular erythroblastosis A (c-erb A) genes. T3 increases the heart transcription of the myosin heavy chain (MHC) alpha gene and decreases the transcription of the MHC beta gene, leading to an increase of myosin V1 and a decrease in myosin V3 isoenzymes. Myosin V1, which is composed of two MHC alpha, has a higher myosin ATPase activity than myosin V3, which contains two MHC beta. The globular head of myosin V1, with its higher ATPase activity, leads to a more rapid movement of the globular head of myosin along the thin filament, resulting in an increased velocity of contraction. T3 also leads to an increase in the speed of diastolic relaxation, which is caused by the more efficient pumping of the calcium ATPase of the sarcoplasmic reticulum (SR). This T3 effect results from T3-induced increases in the level of the mRNA coding for the SR calcium ATPase protein, leading to an increased number of calcium ATPase pump units in the SR. Overall, T3 leads to an increase in ATP consumption in the heart. In addition, less chemical energy of ATP is used for contractile purposes and more of it goes toward heat production, which causes a decreased efficiency of the contractile process in the hyperthyroid heart. The pathophysiologic basis for myxedema is the opposite of that discussed for the hyperthyroid heart. In addition to decreased direct effects of thyroid hormone in cardiac myocytes, indirect effects occur through decreases in peripheral oxygen consumption and changes in hemodynamic parameters. Myofibrillar swelling with loss of striation and interstitial fibrosis occurs on histologic examination of hypothyroid hearts. In addition, accumulation of mucopolysaccharide substances (Glycosaminoglycans) can be demonstrated. On electron microscopic examination, mitochondria show disruption and lipid inclusion. Cardiac papillary muscle obtained from animals with hypothyroidism shows a depression of the force velocity curve and reduced rate of tension development, indicating significant contractile abnormalities. In patients with hypothyroidism, a true enhanced incidence of hypertension (increased peripheral vascular resistance) has been found. In addition, hypercholesterolemia and impairment of fatty acid mobilization are associated with myxedema and present additional risk factors for the development of atherosclerotic cardiovascular disease.

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D006980 Hyperthyroidism Hypersecretion of THYROID HORMONES from the THYROID GLAND. Elevated levels of thyroid hormones increase BASAL METABOLIC RATE. Hyperthyroid,Primary Hyperthyroidism,Hyperthyroidism, Primary,Hyperthyroids
D007037 Hypothyroidism A syndrome that results from abnormally low secretion of THYROID HORMONES from the THYROID GLAND, leading to a decrease in BASAL METABOLIC RATE. In its most severe form, there is accumulation of MUCOPOLYSACCHARIDES in the SKIN and EDEMA, known as MYXEDEMA. It may be primary or secondary due to other pituitary disease, or hypothalamic dysfunction. Central Hypothyroidism,Primary Hypothyroidism,Secondary Hypothyroidism,TSH Deficiency,Thyroid-Stimulating Hormone Deficiency,Central Hypothyroidisms,Deficiency, TSH,Deficiency, Thyroid-Stimulating Hormone,Hormone Deficiency, Thyroid-Stimulating,Hypothyroidism, Central,Hypothyroidism, Primary,Hypothyroidism, Secondary,Hypothyroidisms,Primary Hypothyroidisms,Secondary Hypothyroidisms,TSH Deficiencies,Thyroid Stimulating Hormone Deficiency,Thyroid-Stimulating Hormone Deficiencies
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009230 Myxedema A condition characterized by a dry, waxy type of swelling (EDEMA) with abnormal deposits of MUCOPOLYSACCHARIDES in the SKIN and other tissues. It is caused by a deficiency of THYROID HORMONES. The skin becomes puffy around the eyes and on the cheeks. The face is dull and expressionless with thickened nose and lips. Myxedemas
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D006331 Heart Diseases Pathological conditions involving the HEART including its structural and functional abnormalities. Cardiac Disorders,Heart Disorders,Cardiac Diseases,Cardiac Disease,Cardiac Disorder,Heart Disease,Heart Disorder
D006439 Hemodynamics The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM. Hemodynamic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S Mohr-Kahaly, and G Kahaly, and J Meyer
January 2016, Vnitrni lekarstvi,
S Mohr-Kahaly, and G Kahaly, and J Meyer
January 2017, Nature reviews. Cardiology,
S Mohr-Kahaly, and G Kahaly, and J Meyer
September 1977, Deutsche medizinische Wochenschrift (1946),
S Mohr-Kahaly, and G Kahaly, and J Meyer
December 1997, Drugs & aging,
S Mohr-Kahaly, and G Kahaly, and J Meyer
October 2005, Nihon rinsho. Japanese journal of clinical medicine,
S Mohr-Kahaly, and G Kahaly, and J Meyer
April 2018, Journal of the American College of Cardiology,
S Mohr-Kahaly, and G Kahaly, and J Meyer
January 1995, Revue medicale de Bruxelles,
S Mohr-Kahaly, and G Kahaly, and J Meyer
July 1999, Clinical science (London, England : 1979),
S Mohr-Kahaly, and G Kahaly, and J Meyer
October 2019, Endocrine,
S Mohr-Kahaly, and G Kahaly, and J Meyer
June 1956, Experientia,
Copied contents to your clipboard!