Interactions of 2,2-bis(p-chlorophenyl)-1,1-dichloroethylene with mitochondrial oxidative phosphorylation. 1997

F M Ferreira, and V M Madeira, and A J Moreno
Department of Zoology, University of Coimbra, Portugal.

The effects of DDE (2,2-bis(p-chlorophenyl)-1,1-dichloroethylene), the major metabolite of DDT (2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane), on rat liver mitochondrial bioenergetic activities were examined. The approach developed by M. D. Brand (Biochim Biophys Acta 1018: 128-133, 1990) was used to assess the effects of DDE because it is possible to discriminate the sites of action of compounds having pleiotypic effects on oxidative phosphorylation. Data were further confirmed using a "classical" approach, including measurements of transmembrane potential, respiratory indexes, enzymatic activities and membrane permeability to protons. DDE up to 40 nmol/mg protein affected the proton motive force generating system. In fact, DDE interacted with succinate dehydrogenase (complex II), decreasing respiration and membrane potential. In this concentration range, the permeability of the inner membrane to protons remained intact. Only higher concentrations (> or = 80 nmol/mg) increased permeability to protons, uncoupling oxidation from phosphorylation. The phosphorylative system was not affected because the rate of ATP synthesis was unchanged. In addition, data from carbonyl cyanide m-chlorophenylhydrazone-uncoupled rotenone-inhibited preparations or submitochondrial particles indicated that F0F1 ATPase activity is not affected by DDE. Therefore, DDE inhibition of complex II and putative inhibition of succinate translocation explain the depression of mitochondrial respiration. The use of appropriate substrates and assay conditions indicates that complexes I, III and IV were not affected by DDE. The uncoupling of oxidative phosphorylation at high concentrations (> 80 nmol DDE/mg protein) was probably related to deleterious effects on the integrity of the mitochondrial membrane. We confirmed that the technique originally proposed by Brand is useful for characterizing the effects of xenobiotics on oxidative phosphorylation. In addition, data provided by this technique closely agree with data from classical studies.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D010085 Oxidative Phosphorylation Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds. Phosphorylation, Oxidative,Oxidative Phosphorylations,Phosphorylations, Oxidative
D002258 Carbonyl Cyanide m-Chlorophenyl Hydrazone A proton ionophore. It is commonly used as an uncoupling agent and inhibitor of photosynthesis because of its effects on mitochondrial and chloroplast membranes. CCCP,Carbonyl Cyanide meta-Chlorophenyl Hydrazone,Carbonylcyanide 4-Chlorophenylhydrazone,Propanedinitrile, ((3-chlorophenyl)hydrazono)-,Carbonyl Cyanide m Chlorophenyl Hydrazone,4-Chlorophenylhydrazone, Carbonylcyanide,Carbonyl Cyanide meta Chlorophenyl Hydrazone,Carbonylcyanide 4 Chlorophenylhydrazone
D003633 Dichlorodiphenyl Dichloroethylene An organochlorine pesticide, it is the ethylene metabolite of DDT. DDE,DDX,1,1-Dichloro-2,2-bis(p-chlorophenyl)ethylene,DDMU,p,p'-DDE,p,p-Dichlorodiphenyldichloroethylene,Dichloroethylene, Dichlorodiphenyl
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

F M Ferreira, and V M Madeira, and A J Moreno
September 2005, Environmental pollution (Barking, Essex : 1987),
F M Ferreira, and V M Madeira, and A J Moreno
January 2006, International journal of phytoremediation,
F M Ferreira, and V M Madeira, and A J Moreno
January 1975, Journal of nutritional science and vitaminology,
F M Ferreira, and V M Madeira, and A J Moreno
January 1969, Toxicology and applied pharmacology,
F M Ferreira, and V M Madeira, and A J Moreno
April 2005, Environmental toxicology and chemistry,
F M Ferreira, and V M Madeira, and A J Moreno
March 2002, Environmental toxicology and chemistry,
F M Ferreira, and V M Madeira, and A J Moreno
September 2001, Environmental toxicology and chemistry,
F M Ferreira, and V M Madeira, and A J Moreno
January 1977, Acta chemica Scandinavica. Series B: Organic chemistry and biochemistry,
Copied contents to your clipboard!