Simulated optic flow and extrastriate cortex. II. Responses to bar versus large-field stimuli. 1997

K Mulligan, and J N Kim, and H Sherk
Department of Biological Structure, University of Washington, Seattle 98195-7420, USA.

In the preceding paper we described the responses of cells in the cat's lateral suprasylvian visual area (LS) to large-field optic flow and texture movies. To assess response properties such as direction selectivity, cells were also tested with moving bar stimuli. We expected that there would be good agreement between response properties elicited with optic flow movies and those revealed with bar stimuli. We first asked how well bar response properties predicted responsiveness to optic flow movies. There was no correlation between responsiveness to movies and the degree of end-stopping, length summation, or preference for bars that accelerated and expanded. We then considered only the 322 cells that responded to both bars and optic flow or texture movies and asked how well the strength of their response to movies could be predicted from the direction-tuning curves generated with bar stimuli. One-third of these cells responded much more strongly to movies than could be predicted from their direction-tuning curves. Generally, such cells were rather well tuned for the direction of bar motion and preferred a direction substantially different from what they saw in optic flow movies. Optic flow movies shown in the forward direction were the most effective variety of movie for two-thirds of these cells. To see whether this outcome stemmed from differential direction tuning for bars and large multielement displays, in a second series of experiments we compared direction tuning for bars and large-field texture movies. Many cells showed substantially different direction tuning for the two kinds of stimulus: almost 1/3 of 409 cells had tuning curves that overlapped each other by < 50%. But only a small number of cells (< 10%) responded much better to texture movies than to bars in the predominant direction of image motion in optic flow movies. This result, like that reported in the preceding paper, suggests that cells in LS respond differently to optic flow than to texture displays lacking optic flow motion cues.

UI MeSH Term Description Entries
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas
D014794 Visual Fields The total area or space visible in a person's peripheral vision with the eye looking straightforward. Field, Visual,Fields, Visual,Visual Field

Related Publications

K Mulligan, and J N Kim, and H Sherk
January 2002, Visual neuroscience,
K Mulligan, and J N Kim, and H Sherk
December 2003, Neuroreport,
K Mulligan, and J N Kim, and H Sherk
June 1991, Journal of neurophysiology,
K Mulligan, and J N Kim, and H Sherk
August 2003, Journal of neurophysiology,
K Mulligan, and J N Kim, and H Sherk
September 2022, Nature communications,
K Mulligan, and J N Kim, and H Sherk
February 2010, The Journal of neuroscience : the official journal of the Society for Neuroscience,
K Mulligan, and J N Kim, and H Sherk
October 2018, Proceedings of the National Academy of Sciences of the United States of America,
K Mulligan, and J N Kim, and H Sherk
November 2017, Experimental brain research,
K Mulligan, and J N Kim, and H Sherk
November 1998, Psychological science,
Copied contents to your clipboard!