Modulation and block of ion channels: a new biology of polyamines. 1997

K Williams
Department of Pharmacology, University of Pennsylvania, School of Medicine, Philadelphia 19104-6084, USA.

The endogenous polyamines, spermine, spermidine, and putrescine have effects on several types of cation channels. Intracellular polyamines, in particular spermine, contribute to intrinsic gating and rectification of strong inward rectifier K+ channels. Intracellular spermine is also responsible for inward rectification of some types of Ca(2+)-permeable AMPA and kainate receptors. Spermine has a number of effects on the activity of the NMDA subtype of glutamate receptor, involving two or more extracellular polyamine binding sites on the NMDA receptor. In K+ channels and glutamate receptors, some of the amino acids in the receptor/channel structure that influence to polyamines have been identified, leading to a partial understanding of the effects of polyamines at a molecular level. Block of K+ channels by intracellular polyamines is likely to be an important receptors by intracellular spermine and modulation by extracellular spermine may affect excitability and the influx of Ca2+ in neurons and glial cells of the nervous system.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D011073 Polyamines Amine compounds that consist of carbon chains or rings containing two or more primary amino groups. Polyamine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel
D017470 Receptors, Glutamate Cell-surface proteins that bind glutamate and trigger changes which influence the behavior of cells. Glutamate receptors include ionotropic receptors (AMPA, kainate, and N-methyl-D-aspartate receptors), which directly control ion channels, and metabotropic receptors which act through second messenger systems. Glutamate receptors are the most common mediators of fast excitatory synaptic transmission in the central nervous system. They have also been implicated in the mechanisms of memory and of many diseases. Excitatory Amino Acid Receptors,Glutamate Receptors,Receptors, Excitatory Amino Acid,Excitatory Amino Acid Receptor,Glutamate Receptor,Receptor, Glutamate

Related Publications

K Williams
November 1995, Current biology : CB,
K Williams
April 1993, Trends in neurosciences,
K Williams
January 1999, The Journal of membrane biology,
K Williams
March 2023, Biological chemistry,
K Williams
April 2021, Acta crystallographica. Section D, Structural biology,
K Williams
October 2000, Journal of theoretical biology,
K Williams
December 2005, Nature,
K Williams
November 2019, British journal of pharmacology,
K Williams
May 2013, Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology,
Copied contents to your clipboard!