Isolation and characterization of a hemin-regulated gene, hemR, from Porphyromonas gingivalis. 1997

T Karunakaran, and T Madden, and H Kuramitsu
Department of Oral Biology, State University of New York at Buffalo 14214-3092, USA.

An hemR (hemin-regulated) gene from Porphyromonas gingivalis ATCC 53977 has been isolated and characterized. This gene is present downstream from the prtT gene, previously cloned in this laboratory. In addition, another putative gene, ORF1, was identified between hemR and prtT. The complete nucleotide sequences of ORF1 and hemR were determined, and the deduced amino acid sequence of ORF1 and HemR proteins corresponded to 16- and 48-kDa proteins, respectively. The amino termini of the HemR protein exhibited significant homology with iron-regulated, TonB-dependent outer membrane receptor proteins from various bacteria, while the carboxyl terminus of the HemR protein displayed almost complete identity with a P. gingivalis PrtT protease domain. PCR analyses confirmed the existence of such extensive homology between the carboxyl termini of both the prtT and hemR genes on the P. gingivalis chromosome. Northern blots indicated that ORF1 was part of a 1.0-kb mRNA and was positively regulated by hemin levels. On the other hand, the hemR gene was apparently a part of a 3.0-kb polycistronic message and was negatively regulated at the transcriptional level by hemin. Primer extension analysis of the hemR gene revealed that the transcription start site was at a C residue located within ORF1. An examination of HemR::lacZ constructs in both Escherichia coli and P. gingivalis confirmed hemin repression of hemR expression in both organisms. Moreover, the HemR protein expressed in E. coli was detected by an antiserum from a periodontitis patient heavily colonized with P. gingivalis but not by serum from a periodontally healthy patient or by antisera against hemin-grown P. gingivalis cells. Therefore, it is likely that the 48-kDa HemR protein can be expressed only under hemin-restricted conditions. These results suggest that we have isolated a hemin-regulated gene, hemR, which encodes a 48-kDa protein that may be a TonB-dependent outer membrane protein.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003227 Conjugation, Genetic A parasexual process in BACTERIA; ALGAE; FUNGI; and ciliate EUKARYOTA for achieving exchange of chromosome material during fusion of two cells. In bacteria, this is a uni-directional transfer of genetic material; in protozoa it is a bi-directional exchange. In algae and fungi, it is a form of sexual reproduction, with the union of male and female gametes. Bacterial Conjugation,Conjugation, Bacterial,Genetic Conjugation
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D006427 Hemin Chloro(7,12-diethenyl-3,8,13,17-tetramethyl-21H,23H-porphine-2,18-dipropanoato(4-)-N(21),N(22),N(23),N(24)) ferrate(2-) dihydrogen. Ferriprotoporphyrin,Hematin,Alkaline Hematin D-575,Chlorohemin,Ferrihaem,Ferriheme Chloride,Ferriprotoporphyrin IX,Ferriprotoporphyrin IX Chloride,Panhematin,Protohemin,Protohemin IX,Alkaline Hematin D 575,Chloride, Ferriheme,Chloride, Ferriprotoporphyrin IX,Hematin D-575, Alkaline
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

T Karunakaran, and T Madden, and H Kuramitsu
July 1996, Microbial pathogenesis,
T Karunakaran, and T Madden, and H Kuramitsu
December 2005, Journal of oral science,
T Karunakaran, and T Madden, and H Kuramitsu
December 1999, Oral microbiology and immunology,
T Karunakaran, and T Madden, and H Kuramitsu
February 2015, Molecular oral microbiology,
T Karunakaran, and T Madden, and H Kuramitsu
November 1996, Infection and immunity,
T Karunakaran, and T Madden, and H Kuramitsu
November 2000, Journal of bacteriology,
T Karunakaran, and T Madden, and H Kuramitsu
June 1997, Applied and environmental microbiology,
T Karunakaran, and T Madden, and H Kuramitsu
August 1990, Biochemical Society transactions,
T Karunakaran, and T Madden, and H Kuramitsu
November 1993, Journal of bacteriology,
T Karunakaran, and T Madden, and H Kuramitsu
January 1993, Infection and immunity,
Copied contents to your clipboard!