Horizontal cell spinule dynamics in fish are affected by rearing in monochromatic light. 1996

R H Kröger, and H J Wagner
Anatomisches Institut, Universität Tübingen, Germany.

Blue acaras (Aequidens pulcher, Cichlidae) were reared for 1 yr in white or monochromatic "red", "green" and "blue" lights to study the function and control mechanisms of horizontal cell (HC) spinules in the synaptic pedicles of cones. Ratios of spinules per synaptic ribbon (S/R) were determined in tangential sections in both single and double cones. We found that the S/R ratios in light adapted retinae decreased with decreasing wavelength of the rearing light in all cone types. Conversely, there was an increasing number of incompletely formed spinules with the highest frequency in the blue light group. Dark adaptation resulted in the complete degradation of mature spinules. However, significant numbers of incompletely degraded spinules were observed in the group reared in blue light. Fish reared in blue light which were transferred to white light formed mature spinules when light adapted and still had vestigial spinules when dark adapted. The mechanisms of spinule formation and degradation and the control of spinule dynamics appear to be fully developed in fish reared in monochromatic light. However, long-term chromatic deprivation seems to induce a compensatory modulation of spinule dynamics. A working hypothesis is formulated that interprets the observed effects as manifestations of differences in the activition of dopaminergic interplexiform cells (light adapted) and the sensitivity to glutamate of HCs (dark adapted). Our findings are consistent with the hypothesis that spinules are involved in sign-inverting feedback transmission from HCs to cones.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010471 Perches A common name for fish of the family Percidae, belonging to the suborder Percoidei, order PERCIFORMES. Perca,Perch,Percidae
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D003118 Color Perception Mental processing of chromatic signals (COLOR VISION) from the eye by the VISUAL CORTEX where they are converted into symbolic representations. Color perception involves numerous neurons, and is influenced not only by the distribution of wavelengths from the viewed object, but also by its background color and brightness contrast at its boundary. Color Perceptions,Perception, Color,Perceptions, Color
D003623 Dark Adaptation Adjustment of the eyes under conditions of low light. The sensitivity of the eye to light is increased during dark adaptation. Scotopic Adaptation,Adaptation, Dark,Adaptation, Scotopic
D000221 Adaptation, Ocular The adjustment of the eye to variations in the intensity of light. Light adaptation is the adjustment of the eye when the light threshold is increased; DARK ADAPTATION when the light is greatly reduced. (From Cline et al., Dictionary of Visual Science, 4th ed) Light Adaptation,Adaptation, Light,Adaptations, Light,Adaptations, Ocular,Light Adaptations,Ocular Adaptation,Ocular Adaptations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D017949 Retinal Cone Photoreceptor Cells Photosensitive afferent neurons located primarily within the FOVEA CENTRALIS of the MACULA LUTEA. There are three major types of cone cells (red, blue, and green) whose photopigments have different spectral sensitivity curves. Retinal cone cells operate in daylight vision (at photopic intensities) providing color recognition and central visual acuity. Cone Photoreceptors,Cones (Retina),Cone Photoreceptor Cells,Photoreceptors, Cone,Retinal Cone,Retinal Cone Cells,Retinal Cone Photoreceptors,Cell, Cone Photoreceptor,Cell, Retinal Cone,Cells, Cone Photoreceptor,Cells, Retinal Cone,Cone (Retina),Cone Cell, Retinal,Cone Cells, Retinal,Cone Photoreceptor,Cone Photoreceptor Cell,Cone Photoreceptor, Retinal,Cone Photoreceptors, Retinal,Cone, Retinal,Cones, Retinal,Photoreceptor Cell, Cone,Photoreceptor Cells, Cone,Photoreceptor, Cone,Photoreceptor, Retinal Cone,Photoreceptors, Retinal Cone,Retinal Cone Cell,Retinal Cone Photoreceptor,Retinal Cones

Related Publications

R H Kröger, and H J Wagner
August 2015, Genetics and molecular research : GMR,
R H Kröger, and H J Wagner
November 2015, The Journal of experimental biology,
R H Kröger, and H J Wagner
June 1993, Vision research,
R H Kröger, and H J Wagner
December 1996, Vision research,
R H Kröger, and H J Wagner
February 2018, International journal of dermatology,
Copied contents to your clipboard!