Morphological and electrophysiological characterization of layer III cells of the medial entorhinal cortex of the rat. 1997

T Gloveli, and D Schmitz, and R M Empson, and T Dugladze, and U Heinemann
Department of Neurophysiology, Humboldt University Berlin, Germany.

Entorhinal cortex layer III cells send their axons into hippocampal area CA1, forming the less well studied branch of the perforant path. Using electrophysiological and morphological techniques within a slice preparation, we can classify medial entorhinal cortex layer III cells into four different types. Type 1 and 2 cells were projection cells. Type 1 cells fired regularly and possessed high input resistances and long membrane time constants. Electrical stimulation of the lateral entorhinal cortex revealed a strong excitation by both N-methyl-D-aspartate and non-N-methyl-D-aspartate receptor-mediated excitatory postsynaptic potentials. Type 2 cells accommodated strongly, had lower input resistances, faster time constants and featured prominent synaptic inhibition. Type 1 and 2 cells responded to repetitive synaptic stimulation with a prolonged hyperpolarization. We identified the two other, presumed local circuit, cell types whose axons remained within the entorhinal cortex. Type 3 cells were regular firing, had high input resistances and slow membrane time constants, while type 4 cells fired at higher frequencies and possessed a faster time constant and lower input resistance than type 3 neurons. Type 3 cells presented long-lasting excitatory synaptic potentials. Type 4 neurons were the only ones with different responses to stimulation from different sites. Upon lateral entorhinal cortex stimulation they responded with an excitatory postsynaptic potential, while a monosynaptic inhibitory postsynaptic potential was evoked from deep layer stimulation. In contrast to type 1 and 2 neurons, none of the local circuit cells could be antidromically activated from deep layers, and prolonged hyperpolarizations following synaptic repetitive stimulation were also absent in these cells. Together, the complementing morphology and the electrophysiological characteristics of all the cells can provide the controlled flexibility required during the transfer of cortical information to the hippocampus.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009943 Organophosphorus Compounds Organic compounds that contain phosphorus as an integral part of the molecule. Included under this heading is broad array of synthetic compounds that are used as PESTICIDES and DRUGS. Organophosphorus Compound,Organopyrophosphorus Compound,Organopyrophosphorus Compounds,Compound, Organophosphorus,Compound, Organopyrophosphorus,Compounds, Organophosphorus,Compounds, Organopyrophosphorus
D010721 Phosphinic Acids Inorganic or organic derivatives of phosphinic acid, H2PO(OH). They include phosphinates and phosphinic acid esters. Hypophosphorous Acids,Phosphinic Acid,Acid, Phosphinic,Acids, Hypophosphorous,Acids, Phosphinic
D011412 Propanolamines AMINO ALCOHOLS containing the propanolamine (NH2CH2CHOHCH2) group and its derivatives. Aminopropanols
D011810 Quinoxalines Quinoxaline
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005260 Female Females

Related Publications

T Gloveli, and D Schmitz, and R M Empson, and T Dugladze, and U Heinemann
March 2000, The Journal of comparative neurology,
T Gloveli, and D Schmitz, and R M Empson, and T Dugladze, and U Heinemann
September 2002, The Journal of comparative neurology,
T Gloveli, and D Schmitz, and R M Empson, and T Dugladze, and U Heinemann
January 1997, Hippocampus,
T Gloveli, and D Schmitz, and R M Empson, and T Dugladze, and U Heinemann
February 2015, The Chinese journal of physiology,
T Gloveli, and D Schmitz, and R M Empson, and T Dugladze, and U Heinemann
December 1997, Neuroscience,
T Gloveli, and D Schmitz, and R M Empson, and T Dugladze, and U Heinemann
October 1998, Neuroscience letters,
T Gloveli, and D Schmitz, and R M Empson, and T Dugladze, and U Heinemann
April 2012, Hippocampus,
T Gloveli, and D Schmitz, and R M Empson, and T Dugladze, and U Heinemann
December 1992, Neuroscience letters,
T Gloveli, and D Schmitz, and R M Empson, and T Dugladze, and U Heinemann
March 1998, The European journal of neuroscience,
T Gloveli, and D Schmitz, and R M Empson, and T Dugladze, and U Heinemann
November 1996, Journal of neurophysiology,
Copied contents to your clipboard!