Distribution of 105-kDa sperm unique antigen on goat epididymal mature spermatozoa. 1997

M Sarkar, and T Chatterjee
Indian Institute of Chemical Biology, Jadavpur, Calcutta, India.

The sperm surface antigens are organized into topographic domains, specifically formed into the membrane during the sperm maturation in the epididymis. The present study was directed to determine the distribution of 105 KD sperm membrane antigen (SMA2) into the cell by affinity purified antibody, generated by 105 KD sperm antigen. The cytoimmunofluorescence study of the integrated sperm cell reveal that the antigen is localized in the anterior head overlying the acrosome. On immunoblotting of isolated head and flagellum polypeptides it has been demonstrated that this antigen is selectively present in the head membrane and absent in the flagellum. Because of its selective presence in the anterior head membrane overlying the region of acrosome on mature spermatozoa, the 105 KD sperm unique glyco-antigen may have a role in events leading to sperm-egg recognition. It is a first report of a high molecular mass membrane antigen being localized in the anterior head membrane of goat mature epididymal spermatozoa.

UI MeSH Term Description Entries
D008297 Male Males
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D004822 Epididymis The convoluted cordlike structure attached to the posterior of the TESTIS. Epididymis consists of the head (caput), the body (corpus), and the tail (cauda). A network of ducts leaving the testis joins into a common epididymal tubule proper which provides the transport, storage, and maturation of SPERMATOZOA.
D006041 Goats Any of numerous agile, hollow-horned RUMINANTS of the genus Capra, in the family Bovidae, closely related to the SHEEP. Capra,Capras,Goat
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000954 Antigens, Surface Antigens on surfaces of cells, including infectious or foreign cells or viruses. They are usually protein-containing groups on cell membranes or walls and may be isolated. Cell Surface Antigens,Surface Antigens,Surface Markers, Immunological,Cell Surface Antigen,Immunologic Surface Markers,Markers, Immunological Surface,Surface Antigen,Surface Markers, Immunologic,Antigen, Cell Surface,Antigen, Surface,Antigens, Cell Surface,Immunological Surface Markers,Markers, Immunologic Surface,Surface Antigen, Cell,Surface Antigens, Cell
D013077 Sperm Head The anterior portion of the spermatozoon (SPERMATOZOA) that contains mainly the nucleus with highly compact CHROMATIN material. Head, Sperm,Heads, Sperm,Sperm Heads
D015153 Blotting, Western Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes. Immunoblotting, Western,Western Blotting,Western Immunoblotting,Blot, Western,Immunoblot, Western,Western Blot,Western Immunoblot,Blots, Western,Blottings, Western,Immunoblots, Western,Immunoblottings, Western,Western Blots,Western Blottings,Western Immunoblots,Western Immunoblottings
D019084 Fluorescent Antibody Technique, Indirect A form of fluorescent antibody technique commonly used to detect serum antibodies and immune complexes in tissues and microorganisms in specimens from patients with infectious diseases. The technique involves formation of an antigen-antibody complex which is labeled with fluorescein-conjugated anti-immunoglobulin antibody. (From Bennington, Saunders Dictionary & Encyclopedia of Laboratory Medicine and Technology, 1984) Immunofluorescence Antibody Test, Indirect,Immunofluorescence Technique, Indirect,Fluorescent Antibody Technic, Indirect,Immunofluorescence Technic, Indirect,Indirect Fluorescent Antibody Technic,Indirect Fluorescent Antibody Technique,Indirect Immunofluorescence,Indirect Immunofluorescence Assay,Assay, Indirect Immunofluorescence,Assays, Indirect Immunofluorescence,Immunofluorescence Assay, Indirect,Immunofluorescence Assays, Indirect,Immunofluorescence Technics, Indirect,Immunofluorescence Techniques, Indirect,Immunofluorescence, Indirect,Immunofluorescences, Indirect,Indirect Immunofluorescence Assays,Indirect Immunofluorescence Technic,Indirect Immunofluorescence Technics,Indirect Immunofluorescence Technique,Indirect Immunofluorescence Techniques,Indirect Immunofluorescences

Related Publications

M Sarkar, and T Chatterjee
June 2002, Asian journal of andrology,
M Sarkar, and T Chatterjee
July 1989, Biochemical and biophysical research communications,
M Sarkar, and T Chatterjee
December 1963, Journal of reproduction and fertility,
M Sarkar, and T Chatterjee
July 1980, Journal of reproduction and fertility,
M Sarkar, and T Chatterjee
January 2014, Cryo letters,
M Sarkar, and T Chatterjee
June 2011, The Journal of veterinary medical science,
M Sarkar, and T Chatterjee
September 1998, Biophysical journal,
Copied contents to your clipboard!