Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in vasopressin and oxytocin neuroendocrine cells. 1997

W M Al-Ghoul, and R B Meeker, and R S Greenwood
Department of Neurology and Neurobiology Curriculum, University of North Carolina, Chapel Hill 27599-7025, USA.

Vasopressin and oxytocin neuroendocrine cells within the supraoptic nucleus display distinctive electrophysiological properties and differential responses to selected NMDA receptor (NR) antagonists. To determine if these differences might be due to NMDA receptor composition, we compared the expression of NR1, NR2A, NR2B, NR2C and NR2D subunit mRNAs in immunocytochemically identified vasopressin and oxytocin neuroendocrine cells. In contrast to NR1 subunit mRNA which was equally expressed in both vasopressin and oxytocin cells, NR2B and NR2C displayed very different expression patterns. In oxytocin cells, the NR2B subunit comprised the majority (65%) of the total NR2 expression with NR2C and NR2D contributing 6% and 27%, respectively. Vasopressin cells exhibited 5-fold higher NR2C (32%), approximately half as much NR2B mRNA (39%) and equivalent NR2D (31%). In vitro expression studies have shown that the NR1-NR2C subunit combination exhibits weaker magnesium block and higher affinity for glycine than NR1-NR2B. Thus, the high expression of NR2C in vasopressin cells relative to oxytocin cells may make these cells more susceptible to glutamatergic activation. These observations in vasopressin and oxytocin cells provide the basis for a working model to investigate how differential NMDA receptor composition may shape the neurophysiological properties of neurons.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009490 Neurosecretory Systems A system of NEURONS that has the specialized function to produce and secrete HORMONES, and that constitutes, in whole or in part, an ENDOCRINE SYSTEM or organ. Neuroendocrine System,Neuroendocrine Systems,Neurosecretory System,System, Neuroendocrine,System, Neurosecretory,Systems, Neuroendocrine,Systems, Neurosecretory
D010121 Oxytocin A nonapeptide hormone released from the neurohypophysis (PITUITARY GLAND, POSTERIOR). It differs from VASOPRESSIN by two amino acids at residues 3 and 8. Oxytocin acts on SMOOTH MUSCLE CELLS, such as causing UTERINE CONTRACTIONS and MILK EJECTION. Ocytocin,Pitocin,Syntocinon
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013495 Supraoptic Nucleus Hypothalamic nucleus overlying the beginning of the OPTIC TRACT. Accessory Supraoptic Group,Nucleus Supraopticus,Supraoptic Nucleus of Hypothalamus,Accessory Supraoptic Groups,Group, Accessory Supraoptic,Groups, Accessory Supraoptic,Hypothalamus Supraoptic Nucleus,Nucleus, Supraoptic,Supraoptic Group, Accessory,Supraoptic Groups, Accessory,Supraopticus, Nucleus

Related Publications

W M Al-Ghoul, and R B Meeker, and R S Greenwood
September 1994, The Journal of comparative neurology,
W M Al-Ghoul, and R B Meeker, and R S Greenwood
December 1993, The Journal of comparative neurology,
W M Al-Ghoul, and R B Meeker, and R S Greenwood
January 1998, The Journal of comparative neurology,
W M Al-Ghoul, and R B Meeker, and R S Greenwood
December 1995, Neuroscience letters,
W M Al-Ghoul, and R B Meeker, and R S Greenwood
January 1998, The Journal of comparative neurology,
W M Al-Ghoul, and R B Meeker, and R S Greenwood
June 2000, Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie,
W M Al-Ghoul, and R B Meeker, and R S Greenwood
January 2010, Journal of biochemical and molecular toxicology,
W M Al-Ghoul, and R B Meeker, and R S Greenwood
December 1997, The Journal of pharmacology and experimental therapeutics,
W M Al-Ghoul, and R B Meeker, and R S Greenwood
November 2008, Neuroreport,
W M Al-Ghoul, and R B Meeker, and R S Greenwood
September 2015, Neural development,
Copied contents to your clipboard!