Pediatric brain tumors express multiple receptor tyrosine kinases including novel cell adhesion kinases. 1996

H L Weiner, and M Rothman, and D C Miller, and E B Ziff
Department of Neurosurgery (Pediatric Neurosurgery), New York University Medical Center, NY 10016, USA.

We have used the polymerase chain reaction to clone and characterize growth factor receptor tyrosine kinases (RTKs) expressed in 3 pathologically distinct pediatric brain tumors, an anaplastic ependymoma, a glioblastoma multiforme and a primitive neuroectodermal tumor (PNET). These neoplasms are presumed to be derived from embryonic neuroepithelial precursor cells of the central nervous system. This cloning demonstrated expression of 24 distinct kinase genes: 16 receptor type kinases and 8 nonreceptor type kinases. The expression of 6 receptors, including Hek2, IRR, Ryk, FGFR3, and 2 members of the newly identified cell adhesion kinase receptor family, DDR and TKT, in such tumors has not been reported previously. Northern analysis of mRNA levels revealed DDR expression in 6 of 7 pediatric brain tumors including an ependymoma, PNET, glioblastoma and astrocytoma, and also in an adult pheochromocytoma. Thus, the DDR cell adhesion kinase may be widely expressed in pediatric brain tumors. Also, PCR cloning may be an effective procedure for characterizing RTKs in clinical tissue samples and revealing the expression of novel RTK species.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010673 Pheochromocytoma A usually benign, well-encapsulated, lobular, vascular tumor of chromaffin tissue of the ADRENAL MEDULLA or sympathetic paraganglia. The cardinal symptom, reflecting the increased secretion of EPINEPHRINE and NOREPINEPHRINE, is HYPERTENSION, which may be persistent or intermittent. During severe attacks, there may be HEADACHE; SWEATING, palpitation, apprehension, TREMOR; PALLOR or FLUSHING of the face, NAUSEA and VOMITING, pain in the CHEST and ABDOMEN, and paresthesias of the extremities. The incidence of malignancy is as low as 5% but the pathologic distinction between benign and malignant pheochromocytomas is not clear. (Dorland, 27th ed; DeVita Jr et al., Cancer: Principles & Practice of Oncology, 3d ed, p1298) Pheochromocytoma, Extra-Adrenal,Extra-Adrenal Pheochromocytoma,Extra-Adrenal Pheochromocytomas,Pheochromocytoma, Extra Adrenal,Pheochromocytomas,Pheochromocytomas, Extra-Adrenal
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004806 Ependymoma Glioma derived from EPENDYMOGLIAL CELLS that tend to present as malignant intracranial tumors in children and as benign intraspinal neoplasms in adults. It may arise from any level of the ventricular system or central canal of the spinal cord. Intracranial ependymomas most frequently originate in the FOURTH VENTRICLE and histologically are densely cellular tumors which may contain ependymal tubules and perivascular pseudorosettes. Spinal ependymomas are usually benign papillary or myxopapillary tumors. (From DeVita et al., Principles and Practice of Oncology, 5th ed, p2018; Escourolle et al., Manual of Basic Neuropathology, 2nd ed, pp28-9) Ependymoma, Myxopapillary,Ependymoma, Papillary,Anaplastic Ependymoma,Cellular Ependymoma,Clear Cell Ependymoma,Papillary Ependymoma,Anaplastic Ependymomas,Ependymoma, Anaplastic,Ependymomas,Ependymomas, Anaplastic,Ependymomas, Myxopapillary,Ependymomas, Papillary,Myxopapillary Ependymoma,Myxopapillary Ependymomas,Papillary Ependymomas
D005909 Glioblastoma A malignant form of astrocytoma histologically characterized by pleomorphism of cells, nuclear atypia, microhemorrhage, and necrosis. They may arise in any region of the central nervous system, with a predilection for the cerebral hemispheres, basal ganglia, and commissural pathways. Clinical presentation most frequently occurs in the fifth or sixth decade of life with focal neurologic signs or seizures. Astrocytoma, Grade IV,Giant Cell Glioblastoma,Glioblastoma Multiforme,Astrocytomas, Grade IV,Giant Cell Glioblastomas,Glioblastoma, Giant Cell,Glioblastomas,Glioblastomas, Giant Cell,Grade IV Astrocytoma,Grade IV Astrocytomas
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

H L Weiner, and M Rothman, and D C Miller, and E B Ziff
January 1996, Proceedings of the National Academy of Sciences of the United States of America,
H L Weiner, and M Rothman, and D C Miller, and E B Ziff
July 1995, Leukemia & lymphoma,
H L Weiner, and M Rothman, and D C Miller, and E B Ziff
January 1990, Advances in second messenger and phosphoprotein research,
H L Weiner, and M Rothman, and D C Miller, and E B Ziff
January 2000, Cancer investigation,
H L Weiner, and M Rothman, and D C Miller, and E B Ziff
February 1995, The American journal of pathology,
H L Weiner, and M Rothman, and D C Miller, and E B Ziff
October 2013, Surgical oncology clinics of North America,
H L Weiner, and M Rothman, and D C Miller, and E B Ziff
June 2010, Cell,
H L Weiner, and M Rothman, and D C Miller, and E B Ziff
October 2000, Cell,
H L Weiner, and M Rothman, and D C Miller, and E B Ziff
January 2000, Neuroscience letters,
Copied contents to your clipboard!