Differences of microvascular endothelium in the bovine corpus luteum of pregnancy and the corpus luteum of the estrous cycle. 1996

J Plendl, and C Neumüller, and F Sinowatz
Institute of Veterinary Anatomy, University of Munich, Germany.

The purpose of the present study was to investigate potential modulations of endothelial cells of the bovine corpus luteum (CL) during pregnancy. Luteal endothelia of pregnant and non-pregnant cows were isolated and purity of cultures was verified by flow cytometric quantification of three independent endothelial markers (von Willebrand factor, angiotensin converting enzyme, Bandeiraea simplicifolia agglutinin I ligands). Different cellular parameters including light and electron microscopical investigation of morphology and growth characteristics as well as quantification of cellular lectin binding sites were compared. Extensive heterogeneity between luteal endothelial cells in pregnant and non-pregnant animals could be demonstrated, reflected in functional attributes like angiogenic activity, ultrastructural characteristics and the quantitative expression of cellular carbohydrates. Two different morphological types of cells ("cob-blestone growth pattern' and "arcuate growth pattern') were isolated from the CL of pregnancy as well as from the cyclic CL. Spontaneous angiogenic activities, including cellular migration in band-like structures and formation of ring-like structures, were observed in endothelial cells isolated from the CL of pregnant cows exclusively. This strongly suggests that microvascular luteal endothelium of pregnant animals, in contrast to the one of non-pregnant animals, is able to produce quantitatively and/or qualitatively specific angiogenesis factor(s). Heterogeneity between luteal endothelial cells in the pregnant and non-pregnant animal could also be demonstrated by quantification of lectin (Bandeiraea simplicifolia agglutinin I, concanavalin A, Dolichos biflorus agglutinin, Ulex europaeus agglutinin I, wheat germ agglutinin) binding sites: quantitative expression of specific endothelial cell surface carbohydrates could be correlated to the status of pregnancy, thus emphasizing the actual need of quantification of lectin binding.

UI MeSH Term Description Entries
D007703 Peptidyl-Dipeptidase A A peptidyl-dipeptidase that catalyzes the release of a C-terminal dipeptide, oligopeptide-|-Xaa-Yaa, when Xaa is not Pro, and Yaa is neither Asp nor Glu. Thus, conversion of ANGIOTENSIN I to ANGIOTENSIN II, with increase in vasoconstrictor activity, but no action on angiotensin II. It is also able to inactivate BRADYKININ, a potent vasodilator; and has a glycosidase activity which releases GPI-anchored proteins from the membrane by cleaving the mannose linkage in the GPI moiety. (From https://www.uniprot.org April 15, 2020). ACE1 Angiotensin-Converting Enzyme 1,ACE1 Protein,Angiotensin Converting Enzyme,Angiotensin Converting Enzyme 1,Antigens, CD143,CD143 Antigens,Dipeptidyl Carboxypeptidase I,Kininase II,Peptidase P,Angiotensin I-Converting Enzyme,Carboxycathepsin,Dipeptidyl Peptidase A,Kininase A,ACE1 Angiotensin Converting Enzyme 1,Angiotensin I Converting Enzyme,Carboxypeptidase I, Dipeptidyl,Peptidyl Dipeptidase A
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011270 Pregnancy, Animal The process of bearing developing young (EMBRYOS or FETUSES) in utero in non-human mammals, beginning from FERTILIZATION to BIRTH. Animal Pregnancies,Animal Pregnancy,Pregnancies, Animal
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003338 Corpus Luteum The yellow body derived from the ruptured OVARIAN FOLLICLE after OVULATION. The process of corpus luteum formation, LUTEINIZATION, is regulated by LUTEINIZING HORMONE. Corpora Lutea,Lutea, Corpora
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D004971 Estrus The period in the ESTROUS CYCLE associated with maximum sexual receptivity and fertility in non-primate female mammals.

Related Publications

J Plendl, and C Neumüller, and F Sinowatz
June 2008, The Journal of reproduction and development,
J Plendl, and C Neumüller, and F Sinowatz
May 1996, Theriogenology,
J Plendl, and C Neumüller, and F Sinowatz
April 1976, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
J Plendl, and C Neumüller, and F Sinowatz
February 1995, The Journal of veterinary medical science,
J Plendl, and C Neumüller, and F Sinowatz
January 1968, Journal of animal science,
J Plendl, and C Neumüller, and F Sinowatz
July 2018, Molecular reproduction and development,
J Plendl, and C Neumüller, and F Sinowatz
December 2015, Development & reproduction,
J Plendl, and C Neumüller, and F Sinowatz
January 1979, Advances in experimental medicine and biology,
Copied contents to your clipboard!