Effects of prostaglandins on human hematopoietic osteoclast precursors. 1997

S Roux, and F Pichaud, and J Quinn, and A Lalande, and C Morieux, and A Jullienne, and M C de Vernejoul
INSERM U-349, Hôpital Lariboisiére, Paris, France.

The effect of prostaglandin E2 (PGE2) on osteoclast (OC) differentiation is unclear, either stimulator or inhibitor, depending on the in vitro system used. This probably reflects indirect mechanisms through intermediate cells. We have investigated the direct effect of PGE2 on human OC differentiation from cord blood monocytes (CBMs) in the absence of stromal cells. Macrophages and multinucleated cells (MNCs) resembling OCs form in cultures of CBMs stimulated by 1,25-dihydroxyvitamin D3. In the present study, CBMs were cultured for 3 weeks, as previously described, in the presence or absence of PGE2. The number of MNCs was significantly reduced in the presence of PGE2 as was the proliferation of cultured CBMs, assessed on day 7. Immunohistochemistry was performed to evaluate macrophage markers (CD11b and CD14) and OC marker (beta3-chain). PGE2 significantly increased the numbers of CD11b-positive and CD14-positive cells, whereas the number of beta3-chain-positive cells was significantly decreased. beta3-Chain, c-fos, and human calcitonin receptor (h-CTR) messenger RNA (mRNA) expressions were evaluated by reverse transcription-PCR with RNA extracted from cultured CBMs. In the presence of PGE2, expression of beta3-chain and c-fos mRNA was reduced from the first week of culture. h-CTR mRNA expression was also reduced, and only the h-CTR1 isoform was detected in the presence of PGE2. In addition, when PGE2 was added only during the last week of culture, when no CBM proliferation occurred, the number of CD11b- and beta3-positive cells was unchanged compared to that in the control culture, as were the proportion of MNCs, the fusion index, and the expression of c-fos mRNA. In conclusion, our results suggest that PGE2 has an inhibitory effect on human OC differentiation from CBMs, possibly by reducing precursor proliferation in these cultures. We also hypothesize that PGE2 may reduce OC differentiation by increasing the proportion of precursor cells that differentiate into macrophages. In addition, this may be the result of inhibition of the c-fos expression in CBMs.

UI MeSH Term Description Entries
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D010010 Osteoclasts A large multinuclear cell associated with the BONE RESORPTION. An odontoclast, also called cementoclast, is cytomorphologically the same as an osteoclast and is involved in CEMENTUM resorption. Odontoclasts,Cementoclast,Cementoclasts,Odontoclast,Osteoclast
D002117 Calcitriol The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption. 1 alpha,25-Dihydroxycholecalciferol,1 alpha,25-Dihydroxyvitamin D3,1, 25-(OH)2D3,1,25(OH)2D3,1,25-Dihydroxycholecalciferol,1,25-Dihydroxyvitamin D3,1 alpha, 25-dihydroxy-20-epi-Vitamin D3,1,25(OH)2-20epi-D3,1,25-dihydroxy-20-epi-Vitamin D3,20-epi-1alpha,25-dihydroxycholecaliferol,Bocatriol,Calcijex,Calcitriol KyraMed,Calcitriol-Nefro,Decostriol,MC-1288,MC1288,Osteotriol,Renatriol,Rocaltrol,Silkis,Sitriol,Soltriol,Tirocal,1 alpha,25 Dihydroxyvitamin D3,1,25 Dihydroxycholecalciferol,1,25 Dihydroxyvitamin D3,1,25 dihydroxy 20 epi Vitamin D3,Calcitriol Nefro,D3, 1 alpha,25-Dihydroxyvitamin,D3, 1,25-Dihydroxyvitamin,D3, 1,25-dihydroxy-20-epi-Vitamin,KyraMed, Calcitriol,MC 1288
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015232 Dinoprostone The most common and most biologically active of the mammalian prostaglandins. It exhibits most biological activities characteristic of prostaglandins and has been used extensively as an oxytocic agent. The compound also displays a protective effect on the intestinal mucosa. PGE2,PGE2alpha,Prostaglandin E2,Prostaglandin E2alpha,PGE2 alpha,Prepidil Gel,Prostaglandin E2 alpha,Prostenon,E2 alpha, Prostaglandin,E2, Prostaglandin,E2alpha, Prostaglandin,Gel, Prepidil,alpha, PGE2,alpha, Prostaglandin E2
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D016177 Macrophage-1 Antigen An adhesion-promoting leukocyte surface membrane heterodimer. The alpha subunit consists of the CD11b ANTIGEN and the beta subunit the CD18 ANTIGEN. The antigen, which is an integrin, functions both as a receptor for complement 3 and in cell-cell and cell-substrate adhesive interactions. CR3 Receptor,Complement 3 Receptor,Integrin alphaMbeta2,Mac-1 Antigen,Receptor, Complement 3,Adhesive Receptor Mac-1,Integrin alpha(M)beta(2),Integrin alpha-M beta-2,Mac-1 Adhesive Receptor,Mac-1 Receptor,Mo1 Antigen Receptor,Mo1 Glycoprotein Receptor,Receptor, CR3,Receptor, Mo1 Antigen,Receptor, Mo1 Glycoprotein,Adhesive Receptor, Mac-1,Antigen Receptor, Mo1,Antigen, Macrophage-1,Glycoprotein Receptor, Mo1,Integrin alpha M beta 2,Mac 1 Adhesive Receptor,Mac 1 Antigen,Mac 1 Receptor,Macrophage 1 Antigen,Receptor, Mac-1 Adhesive,alpha-M beta-2, Integrin,alphaMbeta2, Integrin

Related Publications

S Roux, and F Pichaud, and J Quinn, and A Lalande, and C Morieux, and A Jullienne, and M C de Vernejoul
July 1997, Cytotechnology,
S Roux, and F Pichaud, and J Quinn, and A Lalande, and C Morieux, and A Jullienne, and M C de Vernejoul
January 1997, Calcified tissue international,
S Roux, and F Pichaud, and J Quinn, and A Lalande, and C Morieux, and A Jullienne, and M C de Vernejoul
July 2011, Metabolism: clinical and experimental,
S Roux, and F Pichaud, and J Quinn, and A Lalande, and C Morieux, and A Jullienne, and M C de Vernejoul
November 2000, British journal of haematology,
S Roux, and F Pichaud, and J Quinn, and A Lalande, and C Morieux, and A Jullienne, and M C de Vernejoul
April 2013, Zhongguo gu shang = China journal of orthopaedics and traumatology,
S Roux, and F Pichaud, and J Quinn, and A Lalande, and C Morieux, and A Jullienne, and M C de Vernejoul
July 2003, Calcified tissue international,
S Roux, and F Pichaud, and J Quinn, and A Lalande, and C Morieux, and A Jullienne, and M C de Vernejoul
February 1999, Journal of cellular biochemistry,
S Roux, and F Pichaud, and J Quinn, and A Lalande, and C Morieux, and A Jullienne, and M C de Vernejoul
January 1991, Comptes rendus des seances de la Societe de biologie et de ses filiales,
S Roux, and F Pichaud, and J Quinn, and A Lalande, and C Morieux, and A Jullienne, and M C de Vernejoul
January 2009, Arthritis research & therapy,
S Roux, and F Pichaud, and J Quinn, and A Lalande, and C Morieux, and A Jullienne, and M C de Vernejoul
March 2017, Acta biomaterialia,
Copied contents to your clipboard!