The role of transforming growth factor-beta in the regulation of estrogen receptor expression in the MCF-7 breast cancer cell line. 1997

A Stoica, and M Saceda, and A Fakhro, and H B Solomon, and B D Fenster, and M B Martin
Department of Biochemistry and Molecular Biology, Vincent T. Lombardi Cancer Center, Georgetown University, Washington, D.C. 20007, USA.

The role of transforming growth factor-beta1 (TGFbeta1) in the regulation of estrogen receptor (ER) expression in MCF-7 cells was investigated. After treatment of the cells with 100 pM TGFbeta1, ER protein declined by about 30% at 6 h from a concentration of 413.5 fmol/mg protein in control cells to 289.5 fmol/mg protein in treated cells. The concentration of receptor remained suppressed for 24 h. Scatchard analysis demonstrated that the decrease in ER protein corresponded to a decrease in estradiol-binding sites, with no effect on the binding affinity of the ER. The dissociation constant of the estradiol-ER complex was 0.117 nM in TGFbeta1-treated cells compared to 0.155 nM in control cells. Treatment with TGFbeta1 did not influence the half-life of the ER. In TGFbeta1-treated cells, as well as in control cells, the half-life of the receptor was approximately 4 h. In contrast to the effect on ER concentration, TGFbeta1 treatment resulted in a greater decrease in the steady state level of ER messenger RNA (approximately 75%) at 6 h. By 24 h, a small recovery in the amount of messenger RNA was observed. Transcription run-on experiments demonstrated a decrease of approximately 70% in the level of ER gene transcription at 3 h. Transient transfections using an ER promoter-chloramphenicol acetyltransferase construct demonstrated that after TGFbeta1 treatment, chloramphenicol acetyltransferase activity decreased by 50%, suggesting that TGFbeta1 inhibition of the ER gene transcription is mediated through the ER promoter. Although treatment with TGFbeta1 decreased the ER concentration, the growth factor had no effect on the activity of ER, as measured by its effects on estradiol induction of progesterone receptor and pS2, suggesting that TGFbeta1 does not inhibit proliferation of MCF-7 cells by blocking ER activity.

UI MeSH Term Description Entries
D011374 Progesterone The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS. Pregnenedione,Progesterone, (13 alpha,17 alpha)-(+-)-Isomer,Progesterone, (17 alpha)-Isomer,Progesterone, (9 beta,10 alpha)-Isomer
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011960 Receptors, Estrogen Cytoplasmic proteins that bind estrogens and migrate to the nucleus where they regulate DNA transcription. Evaluation of the state of estrogen receptors in breast cancer patients has become clinically important. Estrogen Receptor,Estrogen Receptors,Estrogen Nuclear Receptor,Estrogen Receptor Type I,Estrogen Receptor Type II,Estrogen Receptors Type I,Estrogen Receptors Type II,Receptor, Estrogen Nuclear,Receptors, Estrogen, Type I,Receptors, Estrogen, Type II,Nuclear Receptor, Estrogen,Receptor, Estrogen
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D005260 Female Females
D006207 Half-Life The time it takes for a substance (drug, radioactive nuclide, or other) to lose half of its pharmacologic, physiologic, or radiologic activity. Halflife,Half Life,Half-Lifes,Halflifes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

A Stoica, and M Saceda, and A Fakhro, and H B Solomon, and B D Fenster, and M B Martin
February 1989, Biochemical and biophysical research communications,
A Stoica, and M Saceda, and A Fakhro, and H B Solomon, and B D Fenster, and M B Martin
April 2000, Journal of clinical pathology,
A Stoica, and M Saceda, and A Fakhro, and H B Solomon, and B D Fenster, and M B Martin
January 1988, Japanese journal of cancer research : Gann,
A Stoica, and M Saceda, and A Fakhro, and H B Solomon, and B D Fenster, and M B Martin
February 2018, Research in pharmaceutical sciences,
A Stoica, and M Saceda, and A Fakhro, and H B Solomon, and B D Fenster, and M B Martin
March 1998, The Journal of biological chemistry,
A Stoica, and M Saceda, and A Fakhro, and H B Solomon, and B D Fenster, and M B Martin
October 1994, The Journal of biological chemistry,
A Stoica, and M Saceda, and A Fakhro, and H B Solomon, and B D Fenster, and M B Martin
July 1989, Endocrinology,
A Stoica, and M Saceda, and A Fakhro, and H B Solomon, and B D Fenster, and M B Martin
August 1998, Journal of cellular physiology,
A Stoica, and M Saceda, and A Fakhro, and H B Solomon, and B D Fenster, and M B Martin
April 2000, The Journal of biological chemistry,
Copied contents to your clipboard!