Effects of theophylline and dibutyryl-cAMP on adenosine receptors and heart rate in cultured cardiocytes. 1996

D el-Ani, and K A Jacobson, and A Shainberg
Otto Meyerhoff Drug Receptor Center, Department of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.

The effects of chronic exposure to the adenosine antagonist theophylline (Theo) and dibutyryl cyclic-AMP, a membrane-permeant derivative of the second messenger 3', 5'-cyclic-AMP (cAMP), on contractions and adenosine receptor levels in cultured cardiocytes were studied. Binding of the A1-adenosine receptor antagonist [3H]8-cyclopentyl-1,3-dipropylxanthine ([3H]CPX) was used to monitor the level of the receptors in intact cardiocytes. Both Theo and cAMP stimulated the rate of contraction and also increased the density of adenosine receptors. The Bmax value for [3H]CPX binding to intact cardiocytes was increased by 45-47% following 4 days of exposure to either 50 microM Theo or 100 microM cAMP. Scatchard analysis indicated that the affinity of the A1 receptors for [3H]CPX remained unchanged (Kd 0.1-0.2 nM). No significant differences were observed in protein content or in cell number. A linear correlation was achieved between the level of A1-adenosine receptors and heart rate at various Theo and dibutyryl-cAMP concentrations, although Theo was more efficient in elevation of the receptor density. Increases of 82, 78, 138 and 235% in A1 receptor density and increases of 63, 59, 66 and 150% in heart rate were obtained following 5 days of treatment with 1, 10, and 1000 microM of Theo, respectively. It is concluded that there is a linkage between the rate of cardiac contractions and the level of adenosine receptors. Thus, changes in the density of adenosine receptors may compensate for chronic drug-induced changes in cardiac contractile activity so as to restore conditions to the normal state.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010726 Phosphodiesterase Inhibitors Compounds which inhibit or antagonize the biosynthesis or actions of phosphodiesterases. Phosphodiesterase Antagonists,Phosphodiesterase Inhibitor,Phosphoric Diester Hydrolase Inhibitors,Antiphosphodiesterases,Inhibitor, Phosphodiesterase
D011869 Radioligand Assay Quantitative determination of receptor (binding) proteins in body fluids or tissue using radioactively labeled binding reagents (e.g., antibodies, intracellular receptors, plasma binders). Protein-Binding Radioassay,Radioreceptor Assay,Assay, Radioligand,Assay, Radioreceptor,Assays, Radioligand,Assays, Radioreceptor,Protein Binding Radioassay,Protein-Binding Radioassays,Radioassay, Protein-Binding,Radioassays, Protein-Binding,Radioligand Assays,Radioreceptor Assays
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003402 Creatine Kinase A transferase that catalyzes formation of PHOSPHOCREATINE from ATP + CREATINE. The reaction stores ATP energy as phosphocreatine. Three cytoplasmic ISOENZYMES have been identified in human tissues: the MM type from SKELETAL MUSCLE, the MB type from myocardial tissue and the BB type from nervous tissue as well as a mitochondrial isoenzyme. Macro-creatine kinase refers to creatine kinase complexed with other serum proteins. Creatine Phosphokinase,ADP Phosphocreatine Phosphotransferase,ATP Creatine Phosphotransferase,Macro-Creatine Kinase,Creatine Phosphotransferase, ATP,Kinase, Creatine,Macro Creatine Kinase,Phosphocreatine Phosphotransferase, ADP,Phosphokinase, Creatine,Phosphotransferase, ADP Phosphocreatine,Phosphotransferase, ATP Creatine
D003994 Bucladesine A cyclic nucleotide derivative that mimics the action of endogenous CYCLIC AMP and is capable of permeating the cell membrane. It has vasodilator properties and is used as a cardiac stimulant. (From Merck Index, 11th ed) Dibutyryl Adenosine-3',5'-Monophosphate,Dibutyryl Cyclic AMP,(But)(2) cAMP,Bucladesine, Barium (1:1) Salt,Bucladesine, Disodium Salt,Bucladesine, Monosodium Salt,Bucladesine, Sodium Salt,DBcAMP,Dibutyryl Adenosine 3,5 Monophosphate,N',O'-Dibutyryl-cAMP,N(6),0(2')-Dibutyryl Cyclic AMP,AMP, Dibutyryl Cyclic,Adenosine-3',5'-Monophosphate, Dibutyryl,Cyclic AMP, Dibutyryl,Dibutyryl Adenosine 3',5' Monophosphate,Disodium Salt Bucladesine,Monosodium Salt Bucladesine,N',O' Dibutyryl cAMP,Sodium Salt Bucladesine
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse

Related Publications

D el-Ani, and K A Jacobson, and A Shainberg
December 1977, Experientia,
D el-Ani, and K A Jacobson, and A Shainberg
January 1986, Biochemical and biophysical research communications,
D el-Ani, and K A Jacobson, and A Shainberg
October 1978, Experimental cell research,
D el-Ani, and K A Jacobson, and A Shainberg
September 1973, Science (New York, N.Y.),
D el-Ani, and K A Jacobson, and A Shainberg
January 1974, Acta neurologica Belgica,
D el-Ani, and K A Jacobson, and A Shainberg
January 1980, European journal of respiratory diseases. Supplement,
D el-Ani, and K A Jacobson, and A Shainberg
July 1970, The Journal of clinical investigation,
D el-Ani, and K A Jacobson, and A Shainberg
June 2004, Cardiovascular research,
D el-Ani, and K A Jacobson, and A Shainberg
July 1977, British journal of pharmacology,
D el-Ani, and K A Jacobson, and A Shainberg
April 1978, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!