Voltage- and GABA-evoked currents from Müller glial cells of the baboon retina. 1997

W Reichelt, and M Hernandez, and R T Damian, and W S Kisaalita, and B L Jordan
Paul-Flechsig-Institute for Brain Research, Department of Neurophysiology, University of Leipzig, Germany.

The electrophysiological features of isolated baboon Müller cells was investigated using the whole-cell voltage-clamp technique. Application of depolarizing voltage steps evoked transient inward and delayed outward currents. The transient currents disappeared when extracellular Na+ was replaced by choline+ and were substantially decreased by application of tetrodotoxin (1 microM). The outward currents were strongly diminished by extracellular Ba2+ (1 mM), and the hyperpolarization-generated inward currents disappeared following application of Ba2+. The recently described gamma-aminobutyric acid A (GABAA) receptor currents were increased by flunitrazepam, nordiazepam, pentobarbital and Zn2+, as well as by the inverse agonist DMCM. These results suggest that the baboon Müller cells possess the same voltage-dependent current pattern as those from other species, e.g. humans, whereas their GABAA receptors react in an uncharacteristic manner to DMCM and Zn2+, when compared with neuronal GABAA receptors.

UI MeSH Term Description Entries
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D010215 Papio A genus of the subfamily CERCOPITHECINAE, family CERCOPITHECIDAE, consisting of five named species: PAPIO URSINUS (chacma baboon), PAPIO CYNOCEPHALUS (yellow baboon), PAPIO PAPIO (western baboon), PAPIO ANUBIS (or olive baboon), and PAPIO HAMADRYAS (hamadryas baboon). Members of the Papio genus inhabit open woodland, savannahs, grassland, and rocky hill country. Some authors consider MANDRILLUS a subgenus of Papio. Baboons,Baboons, Savanna,Savanna Baboons,Baboon,Baboon, Savanna,Papios,Savanna Baboon
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D018408 Patch-Clamp Techniques An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used. Patch Clamp Technique,Patch-Clamp Technic,Patch-Clamp Technique,Voltage-Clamp Technic,Voltage-Clamp Technique,Voltage-Clamp Techniques,Whole-Cell Recording,Patch-Clamp Technics,Voltage-Clamp Technics,Clamp Technique, Patch,Clamp Techniques, Patch,Patch Clamp Technic,Patch Clamp Technics,Patch Clamp Techniques,Recording, Whole-Cell,Recordings, Whole-Cell,Technic, Patch-Clamp,Technic, Voltage-Clamp,Technics, Patch-Clamp,Technics, Voltage-Clamp,Technique, Patch Clamp,Technique, Patch-Clamp,Technique, Voltage-Clamp,Techniques, Patch Clamp,Techniques, Patch-Clamp,Techniques, Voltage-Clamp,Voltage Clamp Technic,Voltage Clamp Technics,Voltage Clamp Technique,Voltage Clamp Techniques,Whole Cell Recording,Whole-Cell Recordings

Related Publications

W Reichelt, and M Hernandez, and R T Damian, and W S Kisaalita, and B L Jordan
May 2004, Glia,
W Reichelt, and M Hernandez, and R T Damian, and W S Kisaalita, and B L Jordan
October 2003, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie,
W Reichelt, and M Hernandez, and R T Damian, and W S Kisaalita, and B L Jordan
September 2000, Microscopy research and technique,
W Reichelt, and M Hernandez, and R T Damian, and W S Kisaalita, and B L Jordan
August 2000, The Journal of neuroscience : the official journal of the Society for Neuroscience,
W Reichelt, and M Hernandez, and R T Damian, and W S Kisaalita, and B L Jordan
October 2002, Journal of neuroscience research,
W Reichelt, and M Hernandez, and R T Damian, and W S Kisaalita, and B L Jordan
September 1995, The Journal of comparative neurology,
W Reichelt, and M Hernandez, and R T Damian, and W S Kisaalita, and B L Jordan
June 1996, Proceedings. Biological sciences,
W Reichelt, and M Hernandez, and R T Damian, and W S Kisaalita, and B L Jordan
February 1982, The Anatomical record,
W Reichelt, and M Hernandez, and R T Damian, and W S Kisaalita, and B L Jordan
September 1978, The Journal of cell biology,
W Reichelt, and M Hernandez, and R T Damian, and W S Kisaalita, and B L Jordan
February 2016, Molecular & cellular proteomics : MCP,
Copied contents to your clipboard!