Modeling pressure-flow relations in cardiac muscle in diastole and systole. 1997

M A Vis, and P Sipkema, and N Westerhof
Laboratory for Physiology, Institute for Cardiovascular Research, Vrije Universiteit, Amsterdam, The Netherlands.

Pressure-flow relations were calculated for a symmetrical, maximally dilated, crystalloid-perfused coronary vascular network embedded in cardiac muscle in (static) diastole and (static) systole at two muscle lengths: slack length and 90% of maximal muscle length (Lmax). The calculations are based on the "time-varying elastance concept." That is, the calculations include the mechanical properties of the vascular wall and the (varying) mechanical properties of the myocardial tissue (in cross-fiber direction). We found that, at any given perfusion pressure, coronary flow is smaller in systole than in diastole. Relative reduction in vascular cross-sectional area, which forms the basis of flow impediment, was largest for the smallest arterioles. At a constant perfusion pressure of 62.5 mmHg, the transition from (static) diastole to (static) systole at constant muscle length ("isometric contraction") was calculated to reduce flow by 74% (from 18.9 to 5.0 ml x min(-1) x g(-1)) and by 64% (from 12.6 to 4.6 ml x min(-1) x g(-1)) for the muscle fixed at slack length and 90% of Lmax, respectively. At this perfusion pressure, contraction with 14% shortening (from 90% of Lmax in diastole to slack length in systole) was calculated to reduce flow by 61% (from 12.6 to 5.0 ml x min(-1) x g(-1)). Increasing muscle length from slack length to 90% of Lmax decreases coronary flow by 34% in diastole and by 8% in systole. We conclude that modeling cardiac contraction on the basis of the time-varying elastic properties of the myocardial tissue can explain coronary flow impediment and that contractions, with or without shortening, have a larger effect on coronary flow than changes in muscle length.

UI MeSH Term Description Entries
D008833 Microcirculation The circulation of the BLOOD through the MICROVASCULAR NETWORK. Microvascular Blood Flow,Microvascular Circulation,Blood Flow, Microvascular,Circulation, Microvascular,Flow, Microvascular Blood,Microvascular Blood Flows,Microvascular Circulations
D008955 Models, Cardiovascular Theoretical representations that simulate the behavior or activity of the cardiovascular system, processes, or phenomena; includes the use of mathematical equations, computers and other electronic equipment. Cardiovascular Model,Cardiovascular Models,Model, Cardiovascular
D003326 Coronary Circulation The circulation of blood through the CORONARY VESSELS of the HEART. Circulation, Coronary
D003331 Coronary Vessels The veins and arteries of the HEART. Coronary Arteries,Sinus Node Artery,Coronary Veins,Arteries, Coronary,Arteries, Sinus Node,Artery, Coronary,Artery, Sinus Node,Coronary Artery,Coronary Vein,Coronary Vessel,Sinus Node Arteries,Vein, Coronary,Veins, Coronary,Vessel, Coronary,Vessels, Coronary
D003971 Diastole Post-systolic relaxation of the HEART, especially the HEART VENTRICLES. Diastoles
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001160 Arterioles The smallest divisions of the arteries located between the muscular arteries and the capillaries. Arteriole
D013599 Systole Period of contraction of the HEART, especially of the HEART VENTRICLES. Systolic Time Interval,Interval, Systolic Time,Intervals, Systolic Time,Systoles,Systolic Time Intervals,Time Interval, Systolic,Time Intervals, Systolic

Related Publications

M A Vis, and P Sipkema, and N Westerhof
January 1970, Radiology,
M A Vis, and P Sipkema, and N Westerhof
June 1984, Federation proceedings,
M A Vis, and P Sipkema, and N Westerhof
November 1968, Annals of surgery,
M A Vis, and P Sipkema, and N Westerhof
March 1965, Minerva pediatrica,
M A Vis, and P Sipkema, and N Westerhof
May 1982, Cardiovascular research,
M A Vis, and P Sipkema, and N Westerhof
December 1956, Deutsche medizinische Wochenschrift (1946),
M A Vis, and P Sipkema, and N Westerhof
September 1951, Medizinische Klinik,
M A Vis, and P Sipkema, and N Westerhof
May 2020, JAMA,
M A Vis, and P Sipkema, and N Westerhof
May 2019, JAMA,
M A Vis, and P Sipkema, and N Westerhof
December 2018, Computers in biology and medicine,
Copied contents to your clipboard!