Effect of muscle length on distribution of muscle fiber conduction velocity for M. biceps brachii. 1997

K Sakamoto, and W Li
Department of Communications and Systems, University of Electro-Communications, Tokyo, Japan.

The influence of the muscle length on the distribution of muscle fiber conduction velocity (MFCV) was estimated at 3 different elbow angles (90 degrees, 120 degrees and 150 degrees) during the contraction of 30% of isometric maximum voluntary contraction (MVC). Surface electromyogram was recorded in the distal region of m. biceps brachii using a surface array electrode. MFCVs at the different locations from the end-plate to the distal tendon of the muscle were measured directly using the averaging method. MFCVs near the end-plate and the distal tendon of the muscle showed the high values, while MFCVs in the middle region between the end-plate and the distal tendon of the muscle had low values at the same elbow angles. The mean MFCVs in the middle region decreased when the muscle length increased during the contraction of 30% MVC. The middle region length changed when the elbow joint was extended from the elbow angle of 90 degrees to that of 150 degrees. Although previous studies showed the influence of muscle length on MFCV for special regions (like end-plate, tendon, and middle region), MFCV for whole regions, that is, the distribution of MFCV has not been studied for various muscle length. The MFCV for the same region in the some muscle length could not be estimated. In the study, the distribution of MFCV in various muscle length for the contraction of 30% MVC was obtained, and the model with the function including muscle length for the estimation of MFCV was presented.

UI MeSH Term Description Entries
D008297 Male Males
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D001132 Arm The superior part of the upper extremity between the SHOULDER and the ELBOW. Brachium,Upper Arm,Arm, Upper,Arms,Arms, Upper,Brachiums,Upper Arms
D018482 Muscle, Skeletal A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles. Anterior Tibial Muscle,Gastrocnemius Muscle,Muscle, Voluntary,Plantaris Muscle,Skeletal Muscle,Soleus Muscle,Muscle, Anterior Tibial,Muscle, Gastrocnemius,Muscle, Plantaris,Muscle, Soleus,Muscles, Skeletal,Muscles, Voluntary,Skeletal Muscles,Tibial Muscle, Anterior,Voluntary Muscle,Voluntary Muscles
D018485 Muscle Fibers, Skeletal Large, multinucleate single cells, either cylindrical or prismatic in shape, that form the basic unit of SKELETAL MUSCLE. They consist of MYOFIBRILS enclosed within and attached to the SARCOLEMMA. They are derived from the fusion of skeletal myoblasts (MYOBLASTS, SKELETAL) into a syncytium, followed by differentiation. Myocytes, Skeletal,Myotubes,Skeletal Myocytes,Skeletal Muscle Fibers,Fiber, Skeletal Muscle,Fibers, Skeletal Muscle,Muscle Fiber, Skeletal,Myocyte, Skeletal,Myotube,Skeletal Muscle Fiber,Skeletal Myocyte

Related Publications

K Sakamoto, and W Li
April 2022, Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology,
K Sakamoto, and W Li
July 1993, The Annals of physiological anthropology = Seiri Jinruigaku Kenkyukai kaishi,
K Sakamoto, and W Li
January 1971, Folia morphologica,
K Sakamoto, and W Li
May 1993, Muscle & nerve,
K Sakamoto, and W Li
January 2000, Electromyography and clinical neurophysiology,
K Sakamoto, and W Li
January 1946, Journal of anatomy,
K Sakamoto, and W Li
January 1946, Journal of anatomy,
K Sakamoto, and W Li
June 2018, Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology,
Copied contents to your clipboard!