Electron dose calculation using multiple-scattering theory: energy distribution due to multiple scattering. 1997

D Jette, and S Walker
Lawrence H. Lanzl Institute of Medical Physics, Seattle, Washington 98119-1330, USA.

In 1951, Yang derived formulas for computing the pathlength distribution of particles traversing foils, considering only the multiple-scattering process. We here improve upon the accuracy of that work, by using our second-order small-angle approximation. We derive the general solution for a broad parallel beam, and find simple formulas for Yang's two special cases: the pathlength distribution of all the particles at a particular point, taken together; and the pathlength distribution at a particular point of only those particles with zero net angular deflection. From the pathlength (or excess pathlength) distribution, residual range and energy distributions can immediately be deduced. All this work assumes relatively small energy loss, and we consider 5 MeV electrons penetrating lead, which provides considerable scattering without major energy loss. The second-order energy distribution is found to differ considerably from the (first-order) Yang energy distribution, and to agree more closely with EGS4 Monte Carlo calculations.

UI MeSH Term Description Entries
D007854 Lead A soft, grayish metal with poisonous salts; atomic number 82, atomic weight 207.2, symbol Pb.
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D009010 Monte Carlo Method In statistics, a technique for numerically approximating the solution of a mathematical problem by studying the distribution of some random variable, often generated by a computer. The name alludes to the randomness characteristic of the games of chance played at the gambling casinos in Monte Carlo. (From Random House Unabridged Dictionary, 2d ed, 1993) Method, Monte Carlo
D011829 Radiation Dosage The amount of radiation energy that is deposited in a unit mass of material, such as tissues of plants or animal. In RADIOTHERAPY, radiation dosage is expressed in gray units (Gy). In RADIOLOGIC HEALTH, the dosage is expressed by the product of absorbed dose (Gy) and quality factor (a function of linear energy transfer), and is called radiation dose equivalent in sievert units (Sv). Sievert Units,Dosage, Radiation,Gray Units,Gy Radiation,Sv Radiation Dose Equivalent,Dosages, Radiation,Radiation Dosages,Units, Gray,Units, Sievert
D004583 Electrons Stable elementary particles having the smallest known negative charge, present in all elements; also called negatrons. Positively charged electrons are called positrons. The numbers, energies and arrangement of electrons around atomic nuclei determine the chemical identities of elements. Beams of electrons are called CATHODE RAYS. Fast Electrons,Negatrons,Positrons,Electron,Electron, Fast,Electrons, Fast,Fast Electron,Negatron,Positron
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001703 Biophysics The study of PHYSICAL PHENOMENA and PHYSICAL PROCESSES as applied to living things. Mechanobiology
D012542 Scattering, Radiation The diversion of RADIATION (thermal, electromagnetic, or nuclear) from its original path as a result of interactions or collisions with atoms, molecules, or larger particles in the atmosphere or other media. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Radiation Scattering,Radiation Scatterings,Scatterings, Radiation
D055592 Biophysical Phenomena The physical characteristics and processes of biological systems. Biophysical Concepts,Biophysical Processes,Biophysical Phenomenon,Biophysical Process,Biophysical Concept,Concept, Biophysical,Concepts, Biophysical,Phenomena, Biophysical,Phenomenon, Biophysical,Process, Biophysical,Processes, Biophysical

Related Publications

D Jette, and S Walker
June 1988, Physical review. B, Condensed matter,
Copied contents to your clipboard!