Influences of laryngeal afferent inputs on intralaryngeal muscle activity during vocalization in the cat. 1997

K Shiba, and K Yoshida, and Y Nakajima, and A Konno
Department of Otolaryngology, School of Medicine, Chiba University, Japan.

The present study was undertaken to elucidate the possible role of the laryngeal afferent inputs in the regulation of intralaryngeal muscle activity during vocalization. We studied the influences of airflow and/or pressure applied to the larynx on intralaryngeal muscle activity during vocalization in ketamine-anesthetized cats. Vocalization was induced by airflow applied to the upper airway, which was isolated from the lower airway, during pontine call site stimulation. When the upper airway was open to the atmosphere through the nostrils and mouth, the airflow increased not only the vocal fold adductor and tensor activities but also the duration of these activities. The adductor and tensor activities were increased suddenly at a critical subglottic pressure level equivalent to the subglottic pressure threshold for vocalization. These effects were significantly reduced by sectioning of the internal branch of the superior laryngeal nerve or by lidocaine application to the laryngeal mucosa. Sustained pressure applied to the isolated upper airway, when the mouth and nostrils were occluded, did not affect adductor or tensor activities. These results indicate that the afferent inputs evoked by vocal fold stretching or vibration play an important role in the motor control of intralaryngeal and respiratory muscles during vocalization.

UI MeSH Term Description Entries
D007821 Laryngeal Muscles The striated muscle groups which move the LARYNX as a whole or its parts, such as altering tension of the VOCAL CORDS, or size of the slit (RIMA GLOTTIDIS). Cricothyroid Muscles,Aryepiglottic Muscle,Arytenoid Muscle,Cricoarytenoid Muscles,Thyroarytenoid Muscles,Thyroepiglottic Muscle,Vocal Muscle,Vocalis Muscle,Aryepiglottic Muscles,Arytenoid Muscles,Cricoarytenoid Muscle,Cricothyroid Muscle,Laryngeal Muscle,Muscle, Aryepiglottic,Muscle, Arytenoid,Muscle, Cricoarytenoid,Muscle, Cricothyroid,Muscle, Laryngeal,Muscle, Thyroarytenoid,Muscle, Thyroepiglottic,Muscle, Vocal,Muscle, Vocalis,Muscles, Aryepiglottic,Muscles, Arytenoid,Muscles, Cricoarytenoid,Muscles, Cricothyroid,Muscles, Laryngeal,Muscles, Thyroarytenoid,Muscles, Thyroepiglottic,Muscles, Vocal,Muscles, Vocalis,Thyroarytenoid Muscle,Thyroepiglottic Muscles,Vocal Muscles,Vocalis Muscles
D007823 Laryngeal Nerves Branches of the VAGUS NERVE. The superior laryngeal nerves originate near the nodose ganglion and separate into external branches, which supply motor fibers to the cricothyroid muscles, and internal branches, which carry sensory fibers. The RECURRENT LARYNGEAL NERVE originates more caudally and carries efferents to all muscles of the larynx except the cricothyroid. The laryngeal nerves and their various branches also carry sensory and autonomic fibers to the laryngeal, pharyngeal, tracheal, and cardiac regions. Laryngeal Nerve, Superior,Laryngeal Nerve,Laryngeal Nerves, Superior,Nerve, Laryngeal,Nerve, Superior Laryngeal,Nerves, Laryngeal,Nerves, Superior Laryngeal,Superior Laryngeal Nerve,Superior Laryngeal Nerves
D007830 Larynx A tubular organ of VOICE production. It is located in the anterior neck, superior to the TRACHEA and inferior to the tongue and HYOID BONE. Anterior Commissure, Laryngeal,Anterior Commissure, Larynx,Laryngeal Anterior Commissure,Laryngeal Posterior Commissure,Posterior Commissure, Laryngeal,Posterior Commissure, Larynx,Anterior Commissures, Laryngeal,Anterior Commissures, Larynx,Commissure, Laryngeal Anterior,Commissure, Laryngeal Posterior,Commissure, Larynx Anterior,Commissure, Larynx Posterior,Commissures, Laryngeal Anterior,Commissures, Laryngeal Posterior,Commissures, Larynx Anterior,Commissures, Larynx Posterior,Laryngeal Anterior Commissures,Laryngeal Posterior Commissures,Larynx Anterior Commissure,Larynx Anterior Commissures,Larynx Posterior Commissure,Larynx Posterior Commissures,Posterior Commissures, Laryngeal,Posterior Commissures, Larynx
D008297 Male Males
D011311 Pressoreceptors Receptors in the vascular system, particularly the aorta and carotid sinus, which are sensitive to stretch of the vessel walls. Baroreceptors,Receptors, Stretch, Arterial,Receptors, Stretch, Vascular,Stretch Receptors, Arterial,Stretch Receptors, Vascular,Arterial Stretch Receptor,Arterial Stretch Receptors,Baroreceptor,Pressoreceptor,Receptor, Arterial Stretch,Receptor, Vascular Stretch,Receptors, Arterial Stretch,Receptors, Vascular Stretch,Stretch Receptor, Arterial,Stretch Receptor, Vascular,Vascular Stretch Receptor,Vascular Stretch Receptors
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D012018 Reflex An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies
D005260 Female Females

Related Publications

K Shiba, and K Yoshida, and Y Nakajima, and A Konno
April 1999, Neuroreport,
K Shiba, and K Yoshida, and Y Nakajima, and A Konno
July 1997, Experimental brain research,
K Shiba, and K Yoshida, and Y Nakajima, and A Konno
July 2001, The Annals of otology, rhinology & laryngology. Supplement,
K Shiba, and K Yoshida, and Y Nakajima, and A Konno
January 1960, Acta physiologica Scandinavica. Supplementum,
K Shiba, and K Yoshida, and Y Nakajima, and A Konno
December 2012, Journal of neurophysiology,
K Shiba, and K Yoshida, and Y Nakajima, and A Konno
November 1992, The Journal of physiology,
K Shiba, and K Yoshida, and Y Nakajima, and A Konno
August 1985, The American journal of physiology,
K Shiba, and K Yoshida, and Y Nakajima, and A Konno
July 1988, Journal of applied physiology (Bethesda, Md. : 1985),
K Shiba, and K Yoshida, and Y Nakajima, and A Konno
November 2011, Journal of neurophysiology,
K Shiba, and K Yoshida, and Y Nakajima, and A Konno
June 1993, Neuroscience research,
Copied contents to your clipboard!