Regulation of p53-dependent apoptosis, transcriptional repression, and cell transformation by phosphorylation of the 55-kilodalton E1B protein of human adenovirus type 5. 1997

J G Teodoro, and P E Branton
Department of Biochemistry, McGill University, Montreal, Quebec, Canada.

The adenovirus type 5 55-kDa E1B protein (E1B-55kDa) cooperates with E1A gene products to induce cell transformation. E1A proteins stimulate DNA synthesis and cell proliferation; however, they also cause rapid cell death by p53-dependent and p53-independent apoptosis. It is believed that the role of the E1B-55kDa protein in transformation is to protect against p53-dependent apoptosis by binding to and inactivating p53. It has been shown previously that the 55-kDa polypeptide abrogates p53-mediated transactivation and that mutants defective in p53 binding are unable to cooperate with E1A in transformation. We have previously mapped phosphorylation sites near the carboxy terminus of the E1B-55kDa protein at Ser-490 and Ser-491, which lie within casein kinase II consensus sequences. Conversion of these sites to alanine residues greatly reduced transforming activity, and although the mutant 55-kDa protein was found to interact with p53 at normal levels, it was somewhat defective for suppression of p53 transactivation activity. We now report that a nearby residue, Thr-495, also appears to be phosphorylated. We demonstrate directly that the wild-type 55-kDa protein is able to block E1A-induced p53-dependent apoptosis, whereas cells infected by mutant pm490/1/5A, which contains alanine residues at all three phosphorylation sites, exhibited extensive DNA fragmentation and classic apoptotic cell death. The E1B-55kDa product has been shown to exhibit intrinsic transcriptional repression activity when localized to promoters, such as by fusion with the GAL4 DNA-binding domain, even in the absence of p53. Such repression activity was totally absent with mutant pm490/1/5A. These data suggested that inhibition of p53-dependent apoptosis may depend on the transcriptional repression function of the 55-kDa protein, which appears to be regulated be phosphorylation at the carboxy terminus.

UI MeSH Term Description Entries
D007624 KB Cells This line KB is now known to be a subline of the ubiquitous KERATIN-forming tumor cell line HeLa. It was originally thought to be derived from an epidermal carcinoma of the mouth, but was subsequently found, based on isoenzyme analysis, HeLa marker chromosomes, and DNA fingerprinting, to have been established via contamination by HELA CELLS. The cells are positive for keratin by immunoperoxidase staining. KB cells have been reported to contain human papillomavirus18 (HPV-18) sequences. HeLa-KB Cells,Cell, HeLa-KB,Cell, KB,Cells, HeLa-KB,Cells, KB,HeLa KB Cells,HeLa-KB Cell,KB Cell
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000260 Adenoviruses, Human Species of the genus MASTADENOVIRUS, causing a wide range of diseases in humans. Infections are mostly asymptomatic, but can be associated with diseases of the respiratory, ocular, and gastrointestinal systems. Serotypes (named with Arabic numbers) have been grouped into species designated Human adenovirus A-G. APC Viruses,APC Virus,Adenovirus, Human,Human Adenovirus,Human Adenoviruses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D016159 Tumor Suppressor Protein p53 Nuclear phosphoprotein encoded by the p53 gene (GENES, P53) whose normal function is to control CELL PROLIFERATION and APOPTOSIS. A mutant or absent p53 protein has been found in LEUKEMIA; OSTEOSARCOMA; LUNG CANCER; and COLORECTAL CANCER. p53 Tumor Suppressor Protein,Cellular Tumor Antigen p53,Oncoprotein p53,TP53 Protein,TRP53 Protein,p53 Antigen,pp53 Phosphoprotein,Phosphoprotein, pp53
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis

Related Publications

J G Teodoro, and P E Branton
March 1999, Journal of virology,
J G Teodoro, and P E Branton
September 1990, Journal of virology,
J G Teodoro, and P E Branton
November 1998, Journal of virology,
J G Teodoro, and P E Branton
February 1995, Molecular and cellular biology,
J G Teodoro, and P E Branton
February 1997, Journal of virology,
J G Teodoro, and P E Branton
August 2000, Molecular and cellular biology,
Copied contents to your clipboard!