DNA regions essential for the function of a bacteriophage fd promoter. 1977

T Okamoto, and K Sugimoto, and H Sugisaki, and M Takanami

The promoter for the major coat protein gene of bacteriophage fd contains a unique sequence. TATAAT, in the non-transcribed region corresponding to the Pribnow box. A R-Hha I cleavage site which destroys functions is located five pairs upstream from the TATAAT sequence (fifteen base pairs upstream from the RNA initiation site). The promoter was cleaved into two fragments by R-Hha I and each promoter fragment was joined to DNA fragments derived from other regions. Ligation of the TATAAT-containing fragment to any of the DNA fragments examined resulted in recovery of promoter function. The results suggest for this type of promoter that no unique sequence is necessary upstream from the R-Hha I cleavage site although a contiguous DNA chain must be present in this area.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012321 DNA-Directed RNA Polymerases Enzymes that catalyze DNA template-directed extension of the 3'-end of an RNA strand one nucleotide at a time. They can initiate a chain de novo. In eukaryotes, three forms of the enzyme have been distinguished on the basis of sensitivity to alpha-amanitin, and the type of RNA synthesized. (From Enzyme Nomenclature, 1992). DNA-Dependent RNA Polymerases,RNA Polymerases,Transcriptases,DNA-Directed RNA Polymerase,RNA Polymerase,Transcriptase,DNA Dependent RNA Polymerases,DNA Directed RNA Polymerase,DNA Directed RNA Polymerases,Polymerase, DNA-Directed RNA,Polymerase, RNA,Polymerases, DNA-Dependent RNA,Polymerases, DNA-Directed RNA,Polymerases, RNA,RNA Polymerase, DNA-Directed,RNA Polymerases, DNA-Dependent,RNA Polymerases, DNA-Directed
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral

Related Publications

T Okamoto, and K Sugimoto, and H Sugisaki, and M Takanami
February 1978, Biochimica et biophysica acta,
T Okamoto, and K Sugimoto, and H Sugisaki, and M Takanami
April 1979, FEBS letters,
T Okamoto, and K Sugimoto, and H Sugisaki, and M Takanami
June 1975, Journal of molecular biology,
T Okamoto, and K Sugimoto, and H Sugisaki, and M Takanami
November 1990, Biulleten' eksperimental'noi biologii i meditsiny,
T Okamoto, and K Sugimoto, and H Sugisaki, and M Takanami
April 1982, Nature,
T Okamoto, and K Sugimoto, and H Sugisaki, and M Takanami
January 1966, Journal of molecular biology,
T Okamoto, and K Sugimoto, and H Sugisaki, and M Takanami
January 1978, Proceedings of the National Academy of Sciences of the United States of America,
T Okamoto, and K Sugimoto, and H Sugisaki, and M Takanami
November 1974, Biochemistry,
T Okamoto, and K Sugimoto, and H Sugisaki, and M Takanami
July 1985, European journal of biochemistry,
T Okamoto, and K Sugimoto, and H Sugisaki, and M Takanami
June 1982, The Journal of biological chemistry,
Copied contents to your clipboard!