Homocitrate synthase is located in the nucleus in the yeast Saccharomyces cerevisiae. 1997

S Chen, and J S Brockenbrough, and J E Dove, and J P Aris
Department of Anatomy and Cell Biology, Health Science Center, University of Florida, Gainesville, Florida 32610, USA.

We have generated monoclonal antibodies against nuclear proteins from the yeast Saccharomyces cerevisiae. The monoclonal antibodies react with proteins of 47 and 49 kDa on immunoblots and with partially overlapping sets of proteins on two-dimensional nonequilibrium pH gradient electrophoresis-SDS blots. Immunofluorescence localization shows a nuclear staining pattern. Immunoscreening a yeast expression library yielded five independent full-length clones of two open reading frames from chromosome IV, corresponding to YDL182w (LYS20) and YDL131w in the Saccharomyces genome data base. These two open reading frames are predicted to encode homocitrate synthase isozymes of 47 and 49 kDa, respectively. A clone carrying YDL182w was sequenced in its entirety and directs the expression of a 47-kDa protein in Escherichia coli. A clone carrying YDL131w expresses a 49-kDa protein in E. coli. Yeast grown in minimal medium plus lysine show significant reductions in nuclear immunofluorescence staining. Cell fractionation studies localize the 47- and 49-kDa proteins to the nucleus. Nuclear fractionation studies reveal that a portion of the 47- and 49-kDa proteins can only be extracted with DNase digestion and high salt. The localization of homocitrate synthase to the nucleus is unexpected given previous reports that homocitrate synthase is present in mitochondria and the cytoplasm in S. cerevisiae.

UI MeSH Term Description Entries
D007652 Oxo-Acid-Lyases Enzymes that catalyze the cleavage of a carbon-carbon bond of a 3-hydroxy acid. (Dorland, 28th ed) EC 4.1.3. Ketoacid-Lyases,Ketoacid Lyases,Oxo Acid Lyases
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

S Chen, and J S Brockenbrough, and J E Dove, and J P Aris
July 2021, Applied and environmental microbiology,
S Chen, and J S Brockenbrough, and J E Dove, and J P Aris
October 2006, Biochemistry,
S Chen, and J S Brockenbrough, and J E Dove, and J P Aris
September 2004, Biochemistry,
S Chen, and J S Brockenbrough, and J E Dove, and J P Aris
December 1972, Archives of biochemistry and biophysics,
S Chen, and J S Brockenbrough, and J E Dove, and J P Aris
January 2004, Archives of biochemistry and biophysics,
S Chen, and J S Brockenbrough, and J E Dove, and J P Aris
July 2000, Molecular biology of the cell,
S Chen, and J S Brockenbrough, and J E Dove, and J P Aris
October 1995, Molecular biology of the cell,
S Chen, and J S Brockenbrough, and J E Dove, and J P Aris
September 2005, The Journal of biological chemistry,
S Chen, and J S Brockenbrough, and J E Dove, and J P Aris
October 1996, Yeast (Chichester, England),
S Chen, and J S Brockenbrough, and J E Dove, and J P Aris
November 1976, Journal of general microbiology,
Copied contents to your clipboard!