Ion-dependent inactivation of barium current through L-type calcium channels. 1997

G Ferreira, and J Yi, and E Ríos, and R Shirokov
Department of Molecular Biophysics and Physiology, Rush University, Chicago, Illinois 60612, USA.

It is widely believed that Ba2+ currents carried through L-type Ca2+ channels inactivate by a voltage-dependent mechanism similar to that described for other voltage-dependent channels. Studying ionic and gating currents of rabbit cardiac Ca2+ channels expressed in different subunit combinations in tsA201 cells, we found a phase of Ba2+ current decay with characteristics of ion-dependent inactivation. Upon a long duration (20 s) depolarizing pulse, IBa decayed as the sum of two exponentials. The slow phase (tau approximately 6 s, 21 degrees C) was parallel to a reduction of gating charge mobile at positive voltages, which was determined in the same cells. The fast phase of current decay (tau approximately 600 ms), involving about 50% of total decay, was not accompanied by decrease of gating currents. Its amplitude depended on voltage with a characteristic U-shape, reflecting reduction of inactivation at positive voltages. When Na+ was used as the charge carrier, decay of ionic current followed a single exponential, of rate similar to that of the slow decay of Ba2+ current. The reduction of Ba2+ current during a depolarizing pulse was not due to changes in the concentration gradients driving ion movement, because Ba2+ entry during the pulse did not change the reversal potential for Ba2+. A simple model of Ca(2+) -dependent inactivation (Shirokov, R., R. Levis, N. Shirokova, and F., Ríos. 1993. J. Gen. Physiol. 102:1005-1030) robustly accounts for fast Ba2+ current decay assuming the affinity of the inactivation site on the alpha 1 subunit to be 100 times lower for Ba2+ than Ca2+.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001464 Barium An element of the alkaline earth group of metals. It has an atomic symbol Ba, atomic number 56, and atomic weight 138. All of its acid-soluble salts are poisonous.

Related Publications

G Ferreira, and J Yi, and E Ríos, and R Shirokov
April 1994, Biophysical journal,
G Ferreira, and J Yi, and E Ríos, and R Shirokov
June 1994, Biochemical and biophysical research communications,
G Ferreira, and J Yi, and E Ríos, and R Shirokov
October 2006, Proceedings of the National Academy of Sciences of the United States of America,
G Ferreira, and J Yi, and E Ríos, and R Shirokov
November 1981, The Journal of physiology,
G Ferreira, and J Yi, and E Ríos, and R Shirokov
March 1999, Neuron,
G Ferreira, and J Yi, and E Ríos, and R Shirokov
February 2008, Proceedings of the National Academy of Sciences of the United States of America,
G Ferreira, and J Yi, and E Ríos, and R Shirokov
November 2002, Nature reviews. Neuroscience,
G Ferreira, and J Yi, and E Ríos, and R Shirokov
April 2011, The Journal of biological chemistry,
G Ferreira, and J Yi, and E Ríos, and R Shirokov
March 1997, Toxicology and applied pharmacology,
Copied contents to your clipboard!