Macrophage and interleukin-1 induced nitric oxide production and cytostasis in hamster tumor cells varying in malignant potential. 1997

N Lavnikova, and L Burdelya, and A Lakhotia, and N Patel, and S Prokhorova, and D L Laskin
Rutgers University, Piscataway, New Jersey 08855-0789, USA.

Nitric oxide has been shown to contribute to cytotoxicity in mouse and rat tumor cells. In these studies we examined the role of nitric oxide in cytostasis in hamster tumor cells varying in their malignant potential. Spontaneously transformed hamster embryonic fibroblasts (STHE cells) with low metastatic activity produced significantly greater amounts of nitric oxide in response to interleukin-1 (IL-1) or lipopolysaccharide (LPS)-activated hamster alveolar macrophages (HAM) than did tumor cell lines with high experimental metastatic activity (HET-SR, HET-SR1, STHE-83/20 cells). HET-SR cells, which exhibit low spontaneous metastastic activity, also produced relatively high levels of nitric oxide in response to IL-1, whereas the response of the spontaneously metastatic lines, HET-SR1 and STHE-83/20 cells, was low. IL-1 and HAM also induced cytostasis in nitric oxide-producing STHE and HET-SR cells. However, the nitric oxide synthase inhibitor, N(G)-monomethyl-L-arginine (L-NMMA), had no effect on this activity. These findings, together with the observation that anti-tumor necrosis factor alpha antibody prevented HAM-mediated cytostasis in all of the tumor cell lines demonstrate that nitric oxide is not involved in hamster macrophage-induced tumor cell growth suppression. In contrast to HAM, rat alveolar macrophages, which produced nitric oxide in response to LPS, exerted similar levels of cytostasis toward all of the hamster tumor cell variants, an action that was blocked by L-NMMA in HET-SR, HET-SR1, and STHE-83/20 cells. Thus production of nitric oxide by hamster tumor cells is inversely correlated with their malignant potential. However, nitric oxide does not appear to be involved in IL-1- or HAM-mediated cytostasis toward hamster tumor cells.

UI MeSH Term Description Entries
D007375 Interleukin-1 A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation. IL-1,Lymphocyte-Activating Factor,Epidermal Cell Derived Thymocyte-Activating Factor,Interleukin I,Macrophage Cell Factor,T Helper Factor,Epidermal Cell Derived Thymocyte Activating Factor,Interleukin 1,Lymphocyte Activating Factor
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008647 Mesocricetus A genus in the order Rodentia and family Cricetidae. One species, Mesocricetus auratus or golden hamster is widely used in biomedical research. Hamsters, Golden,Hamsters, Golden Syrian,Hamsters, Syrian,Mesocricetus auratus,Syrian Golden Hamster,Syrian Hamster,Golden Hamster,Golden Hamster, Syrian,Golden Hamsters,Golden Syrian Hamsters,Hamster, Golden,Hamster, Syrian,Hamster, Syrian Golden,Syrian Hamsters
D009374 Neoplasms, Experimental Experimentally induced new abnormal growth of TISSUES in animals to provide models for studying human neoplasms. Experimental Neoplasms,Experimental Neoplasm,Neoplasm, Experimental
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D005260 Female Females
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster

Related Publications

N Lavnikova, and L Burdelya, and A Lakhotia, and N Patel, and S Prokhorova, and D L Laskin
December 1996, Journal of cellular physiology,
N Lavnikova, and L Burdelya, and A Lakhotia, and N Patel, and S Prokhorova, and D L Laskin
May 1989, The Journal of experimental medicine,
N Lavnikova, and L Burdelya, and A Lakhotia, and N Patel, and S Prokhorova, and D L Laskin
August 1998, The Journal of biological chemistry,
N Lavnikova, and L Burdelya, and A Lakhotia, and N Patel, and S Prokhorova, and D L Laskin
January 1986, Journal of immunology (Baltimore, Md. : 1950),
N Lavnikova, and L Burdelya, and A Lakhotia, and N Patel, and S Prokhorova, and D L Laskin
October 1996, Journal of leukocyte biology,
N Lavnikova, and L Burdelya, and A Lakhotia, and N Patel, and S Prokhorova, and D L Laskin
July 1994, Experimental cell research,
N Lavnikova, and L Burdelya, and A Lakhotia, and N Patel, and S Prokhorova, and D L Laskin
October 1994, Infection and immunity,
N Lavnikova, and L Burdelya, and A Lakhotia, and N Patel, and S Prokhorova, and D L Laskin
January 1998, Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine,
N Lavnikova, and L Burdelya, and A Lakhotia, and N Patel, and S Prokhorova, and D L Laskin
July 1993, Biochemical and biophysical research communications,
N Lavnikova, and L Burdelya, and A Lakhotia, and N Patel, and S Prokhorova, and D L Laskin
April 1999, Kidney international,
Copied contents to your clipboard!