Kappa opioid receptor tolerance in the guinea pig hippocampus. 1997

W Jin, and G W Terman, and C Chavkin
Department of Pharmacology, University of Washington, Seattle 98195-7280, USA.

We investigated whether chronic, in vivo administration of U50,488H, a kappa-1 opioid agonist, caused the development of tolerance to both the electrophysiological effects of applied kappa opioids and endogenously released dynorphins. In hippocampal slices from drug-naive guinea pigs, application of U69,593, a kappa-1 agonist, produced a concentration-dependent inhibition (EC50 = 20 nM) of the amplitude of the granule cell population response in the dentate gyrus. In slices from chronically U50,488H-treated animals, the concentration-response curve for U69,593 was shifted 3-fold to the right (EC50 = 59 nM), with a significant decrease in the maximal effect of U69,593. We also found that the effects of endogenously released dynorphins were significantly attenuated by chronic U50,488H treatment. There was no cross-tolerance between kappa and mu opioid receptor agonists as measured with the in vitro electrophysiological assay, and the noncompetitive N-methyl-D-aspartate receptor antagonist MK801 did not prevent the development of tolerance to either the electrophysiological effects or the hypothermic effects of kappa opioids. Our study demonstrates that receptor-selective tolerance to the kappa opioid actions in the guinea pig hippocampus does develop after chronic U50,488H treatment; but, unlike the mechanisms reported to underlie tolerance to kappa opioid analgesia, the inhibitory effects in the hippocampus did not depend on activation of N-methyl-D-aspartate receptors.

UI MeSH Term Description Entries
D008297 Male Males
D011759 Pyrrolidines Compounds also known as tetrahydropyridines with general molecular formula (CH2)4NH. Tetrahydropyridine,Tetrahydropyridines
D004361 Drug Tolerance Progressive diminution of the susceptibility of a human or animal to the effects of a drug, resulting from its continued administration. It should be differentiated from DRUG RESISTANCE wherein an organism, disease, or tissue fails to respond to the intended effectiveness of a chemical or drug. It should also be differentiated from MAXIMUM TOLERATED DOSE and NO-OBSERVED-ADVERSE-EFFECT LEVEL. Drug Tolerances,Tolerance, Drug,Tolerances, Drug
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate
D016291 Dizocilpine Maleate A potent noncompetitive antagonist of the NMDA receptor (RECEPTORS, N-METHYL-D-ASPARTATE) used mainly as a research tool. The drug has been considered for the wide variety of neurodegenerative conditions or disorders in which NMDA receptors may play an important role. Its use has been primarily limited to animal and tissue experiments because of its psychotropic effects. Dizocilpine,MK-801,MK 801,MK801
D017450 Receptors, Opioid, mu A class of opioid receptors recognized by its pharmacological profile. Mu opioid receptors bind, in decreasing order of affinity, endorphins, dynorphins, met-enkephalin, and leu-enkephalin. They have also been shown to be molecular receptors for morphine. Morphine Receptors,Opioid Receptors, mu,Receptors, Morphine,Receptors, mu,Receptors, mu Opioid,mu Receptors,Morphine Receptor,mu Opioid Receptor,mu Receptor,Opioid Receptor, mu,Receptor, Morphine,Receptor, mu,Receptor, mu Opioid,mu Opioid Receptors
D017473 Receptors, Opioid, kappa A class of opioid receptors recognized by its pharmacological profile. Kappa opioid receptors bind dynorphins with a higher affinity than endorphins which are themselves preferred to enkephalins. Opioid Receptors, kappa,Receptors, kappa,Receptors, kappa Opioid,kappa Receptors,kappa Opioid Receptor,kappa Receptor,Opioid Receptor, kappa,Receptor, kappa,Receptor, kappa Opioid,kappa Opioid Receptors

Related Publications

W Jin, and G W Terman, and C Chavkin
December 1997, The Journal of pharmacology and experimental therapeutics,
W Jin, and G W Terman, and C Chavkin
June 1991, European journal of pharmacology,
W Jin, and G W Terman, and C Chavkin
March 1992, European journal of pharmacology,
W Jin, and G W Terman, and C Chavkin
June 1996, Naunyn-Schmiedeberg's archives of pharmacology,
W Jin, and G W Terman, and C Chavkin
February 1995, The Journal of pharmacology and experimental therapeutics,
W Jin, and G W Terman, and C Chavkin
June 1994, The Journal of pharmacology and experimental therapeutics,
W Jin, and G W Terman, and C Chavkin
May 1988, European journal of pharmacology,
W Jin, and G W Terman, and C Chavkin
December 1988, The Journal of pharmacology and experimental therapeutics,
W Jin, and G W Terman, and C Chavkin
June 1990, European journal of pharmacology,
Copied contents to your clipboard!