A phylogenetic analysis of the genus Saccharomyces based on 18S rRNA gene sequences: description of Saccharomyces kunashirensis sp. nov. and Saccharomyces martiniae sp. nov. 1997

S A James, and J Cai, and I N Roberts, and M D Collins
National Collection of Yeast Cultures, Department of Genetics and Microbiology, Norwich Laboratory, United Kingdom.

A phylogenetic investigation of the ascomycetous yeast genus Saccharomyces was performed by using 18S rRNA gene sequence analysis. Comparative sequence analysis showed that the genus is phylogenetically very heterogeneous. Saccharomyces species were found to be phylogenetically interdispersed with members of other ascomycetous genera (e.g., the genera Kluyveromyces, Torulaspora, and Zygosaccharomyces). The four species of the Saccharomyces sensu stricto complex (viz., Saccharomyces bayanus, Saccharomyces cerevisiae, Saccharomyces paradoxus, and Saccharomyces pastorianus) were found to be phylogenetically closely related to one another, displaying exceptionally high levels of sequence similarity (> or = 99.9%). These four species formed a natural group that was quite separate from the other Saccharomyces and non-Saccharomyces species examined. Saccharomyces exiguus and its anamorph, Candida holmii, were found to be genealogically almost identical and, along with Saccharomyces barnettii, formed a stable group closely related to, but nevertheless distinct from, Kluyveromyces africanus, Kluyveromyces lodderae, Saccharomyces rosinii, Saccharomyces spencerorum, and Saccharomyces sp. strain CBS 7662T (T = type strain). Saccharomyces spencerorum and Kluyveromyces lodderae displayed a particularly close genealogical affinity with each other, as did Saccharomyces castellii and Saccharomyces dairensis. Similarly, Saccharomyces servazzii, Saccharomyces unisporus, and Saccharomyces sp. strain CBS 6904 were found to be genotypically highly related and to form a phylogenetically distinct lineage. The recently reinstated species Saccharomyces transvaalensis was found to form a distinct lineage and displayed no specific association with any other Saccharomyces or non-Saccharomyces species. Saccharomyces kluyveri formed a very loose association with a group which included Kluyveromyces thermotolerans, Kluyveromyces waltii, Zygosaccharomyces cidri, and Zygosaccharomyces fermentati. Saccharomyces spp. strain CBS 6334T, on the other hand, displayed no specific association with any of the other Saccharomyces spp. studied, although a neighbor-joining analysis did reveal that this strain exhibited a loose phylogenetic affinity with Kluyveromyces polysporus and Kluyveromyces yarrowii. On the basis of the phylogenetic findings, two new Saccharomyces species, Saccharomyces kunashirensis (with type strain CBS 7662) and Saccharomyces martiniae (with type strain CBS 6334), are described.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D004275 DNA, Ribosomal DNA sequences encoding RIBOSOMAL RNA and the segments of DNA separating the individual ribosomal RNA genes, referred to as RIBOSOMAL SPACER DNA. Ribosomal DNA,rDNA
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D012331 RNA, Fungal Ribonucleic acid in fungi having regulatory and catalytic roles as well as involvement in protein synthesis. Fungal RNA
D012337 RNA, Ribosomal, 18S Constituent of the 40S subunit of eukaryotic ribosomes. 18S rRNA is involved in the initiation of polypeptide synthesis in eukaryotes. 18S Ribosomal RNA,18S RRNA,RNA, 18S Ribosomal,Ribosomal RNA, 18S
D012440 Saccharomyces A genus of ascomycetous fungi of the family Saccharomycetaceae, order SACCHAROMYCETALES. Saccharomyce
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain

Related Publications

S A James, and J Cai, and I N Roberts, and M D Collins
November 1994, FEMS microbiology letters,
S A James, and J Cai, and I N Roberts, and M D Collins
October 1995, International journal of systematic bacteriology,
S A James, and J Cai, and I N Roberts, and M D Collins
April 1997, International journal of systematic bacteriology,
S A James, and J Cai, and I N Roberts, and M D Collins
July 2002, FEMS microbiology letters,
S A James, and J Cai, and I N Roberts, and M D Collins
April 1998, International journal of systematic bacteriology,
S A James, and J Cai, and I N Roberts, and M D Collins
December 2017, Marine genomics,
S A James, and J Cai, and I N Roberts, and M D Collins
December 1993, Journal of molecular evolution,
S A James, and J Cai, and I N Roberts, and M D Collins
October 2012, Parasitology research,
Copied contents to your clipboard!