Differential effects of the serotonin receptors on cultured rat cerebral cortical neurons. 1997

T Matsuoka, and T Nishizaki, and Y Ikeuchi, and Y Okada, and K Sumino
Department of Public Health, Kobe University School of Medicine, Japan.

Effects of serotonin (5-HT) on cerebral cortical neurons were examined by patch clamp techniques. 5-HT produced a variety of responses such as outward (19/73 patches/neurons), slow inward (15/73 patches/neurons), fast inward (8/73 patches/neurons), and mixed currents (initially fast inward deflection followed by an outward response: 2.73 patches/neurons), with a latency of 12 sec, 15 sec, 0 sec, and 0 sec respectively, at a holding potential of -60 mV in whole-cell patches. The fast inward currents were again evoked by a selective 5-HT3 receptor agonist, 1-(m-chlorophenyl)-biguanide hydrochloride (CPBG). In the cell-attached patch clamp configuration, 5-HT inside the patch pipette elicited single channel currents with slope conductances of 42 pS and 132 pS (4/42 patches/neurons). CPBG inside the patch pipette evoked inward single channel currents with a lower slope conductance of 41 pS (3/23 patches/neurons). In contrast, application of 5-HT or a 5-HT2 receptor agonist, alpha-methyl-5-hydroxytryptamine-maleate, outside the patch pipette induced outward single channel currents with a major slope conductance of 140 pS (8/30 patches/neurons) or 135 pS (6/20 patches neurons), respectively. These results indicate that the outward and fast inward currents may be mediated respectively by the 5-HT2 receptor, which is coupled to a G-protein, and by the 5-HT3 receptor, which contains the non-selective cation channel, and that the mixed type may be caused by both the 5-HT2 and 5-HT3 receptors.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017366 Serotonin Receptor Agonists Endogenous compounds and drugs that bind to and activate SEROTONIN RECEPTORS. Many serotonin receptor agonists are used as ANTIDEPRESSANTS; ANXIOLYTICS; and in the treatment of MIGRAINE DISORDERS. 5-HT Agonists,5-Hydroxytryptamine Agonists,Serotonin Agonists,5-HT Agonist,5-Hydroxytrytamine Agonist,Receptor Agonists, Serotonin,Serotonergic Agonist,Serotonergic Agonists,Serotonin Agonist,Serotonin Receptor Agonist,5 HT Agonist,5 HT Agonists,5 Hydroxytryptamine Agonists,5 Hydroxytrytamine Agonist,Agonist, 5-HT,Agonist, 5-Hydroxytrytamine,Agonist, Serotonergic,Agonist, Serotonin,Agonist, Serotonin Receptor,Agonists, 5-HT,Agonists, 5-Hydroxytryptamine,Agonists, Serotonergic,Agonists, Serotonin,Agonists, Serotonin Receptor,Receptor Agonist, Serotonin
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018408 Patch-Clamp Techniques An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used. Patch Clamp Technique,Patch-Clamp Technic,Patch-Clamp Technique,Voltage-Clamp Technic,Voltage-Clamp Technique,Voltage-Clamp Techniques,Whole-Cell Recording,Patch-Clamp Technics,Voltage-Clamp Technics,Clamp Technique, Patch,Clamp Techniques, Patch,Patch Clamp Technic,Patch Clamp Technics,Patch Clamp Techniques,Recording, Whole-Cell,Recordings, Whole-Cell,Technic, Patch-Clamp,Technic, Voltage-Clamp,Technics, Patch-Clamp,Technics, Voltage-Clamp,Technique, Patch Clamp,Technique, Patch-Clamp,Technique, Voltage-Clamp,Techniques, Patch Clamp,Techniques, Patch-Clamp,Techniques, Voltage-Clamp,Voltage Clamp Technic,Voltage Clamp Technics,Voltage Clamp Technique,Voltage Clamp Techniques,Whole Cell Recording,Whole-Cell Recordings

Related Publications

T Matsuoka, and T Nishizaki, and Y Ikeuchi, and Y Okada, and K Sumino
December 1996, Brain research,
T Matsuoka, and T Nishizaki, and Y Ikeuchi, and Y Okada, and K Sumino
February 1996, Journal of neuroscience research,
T Matsuoka, and T Nishizaki, and Y Ikeuchi, and Y Okada, and K Sumino
June 2001, Neuroscience letters,
T Matsuoka, and T Nishizaki, and Y Ikeuchi, and Y Okada, and K Sumino
February 2008, Neuroscience,
T Matsuoka, and T Nishizaki, and Y Ikeuchi, and Y Okada, and K Sumino
October 1976, Life sciences,
T Matsuoka, and T Nishizaki, and Y Ikeuchi, and Y Okada, and K Sumino
May 1998, Journal of neurophysiology,
T Matsuoka, and T Nishizaki, and Y Ikeuchi, and Y Okada, and K Sumino
February 2009, Biological & pharmaceutical bulletin,
T Matsuoka, and T Nishizaki, and Y Ikeuchi, and Y Okada, and K Sumino
July 1998, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
T Matsuoka, and T Nishizaki, and Y Ikeuchi, and Y Okada, and K Sumino
August 2002, Di 1 jun yi da xue xue bao = Academic journal of the first medical college of PLA,
T Matsuoka, and T Nishizaki, and Y Ikeuchi, and Y Okada, and K Sumino
January 2024, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!