Amantadine and equine influenza: pharmacology, pharmacokinetics and neurological effects in the horse. 1997

W A Rees, and J D Harkins, and W E Woods, and R A Blouin, and M Lu, and C Fenger, and R E Holland, and T M Chambers, and T Tobin
Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington 40546, USA.

Amantadine is an antiviral agent effective against influenza A viruses. We investigated 1) the antiviral efficacy, 2) analytical detection, 3) bioavailability and disposition, 4) pharmacokinetic modelling and 5) adverse reactions of amantadine in the horse. In vitro, amantadine and its derivative rimantadine suppressed the replication of recent isolates of equine-2 influenza virus with effective doses (EDs) of less than 30 ng/ml. Rimantadine was more effective than amantadine against most viral isolates; we suggest a minimum plasma concentration of 300 ng/ml of amantadine for therapeutic efficacy. In vivo an i.v. dose of amantadine 15 mg/kg bwt produced mild, transient CNS signs which were no longer apparent after 30 min. Amantadine administered at a dose of 15 mg/kg bwt was established as the maximum safe single i.v. dose. However, if repeated i.v. administration of amantadine is required no more than 10 mg/kg bwt t.i.d. should be used. The maximal safe plasma concentration of amantadine was not evaluated but is probably greater than 2000 ng/ml and possibly greater than 4000 ng/ml. On the other hand, horses with lower seizure thresholds, or those on medications that lower seizure thresholds, may be at increased risk of amantadine-induced seizures, which show few premonitory signs and are rapidly fatal. After i.v. administration of amantadine 10 mg/kg bwt, the disposition kinetics were well fitted by a 2-compartment open model. The estimated peak plasma concentration after this dose was about 4500 ng/ml, the volume of distribution at steady-state (Vdss) was (mean +/- s.d.) 4.9 +/- 1.9 l/kg bwt and the beta phase half-life was 1.83 +/- 0.87 h. Computer projections of plasma amantadine concentrations after i.v. administration of amantadine at a dose of 10 mg/kg bwt t.i.d. at 8 h intervals suggest peak plasma concentrations of 4000-5000 ng/ml and troughs of less than 300 ng/ml will be achieved. Amantadine administered orally at 10 mg/kg bwt and 20 mg/kg bwt showed mean oral bioavailability of about 40-60% and a plasma half life of 3.4 +/- 1.4 h; however, there was substantial inter-animal variation in bioavailability. Projections based on the kinetics observed in individual animals suggest that some animals readily maintain effective plasma concentrations of amantadine after oral administration of 20 mg/kg bwt t.i.d. On the other hand, animals in which amantadine is poorly bioavailable may require up to a 6-fold (120 mg/kg bwt) increase in the oral dose to achieve effective blood concentrations. Withholding food for 15 h did not reduce these inter-animal differences in bioavailability. Our results showed that simple dosing with oral amantadine will not yield effective plasma concentrations in all animals. While i.v. administration yielded more reproducible plasma concentrations, care should be taken to see that the seizure threshold is not exceeded. In acute situations, i.v. administration (5 mg/kg bwt) every 4 h should maintain safe and effective plasma and respiratory tract concentrations of amantadine.

UI MeSH Term Description Entries
D007275 Injections, Intravenous Injections made into a vein for therapeutic or experimental purposes. Intravenous Injections,Injection, Intravenous,Intravenous Injection
D009976 Orthomyxoviridae Infections Virus diseases caused by the ORTHOMYXOVIRIDAE. Orthomyxovirus Infections,Infections, Orthomyxoviridae,Infections, Orthomyxovirus,Swine Influenza,Infection, Orthomyxoviridae,Infection, Orthomyxovirus,Influenza, Swine,Orthomyxoviridae Infection,Orthomyxovirus Infection
D009980 Influenza A virus The type species of the genus ALPHAINFLUENZAVIRUS that causes influenza and other diseases in humans and animals. Antigenic variation occurs frequently between strains, allowing classification into subtypes and variants. Transmission is usually by aerosol (human and most non-aquatic hosts) or waterborne (ducks). Infected birds shed the virus in their saliva, nasal secretions, and feces. Alphainfluenzavirus influenzae,Avian Orthomyxovirus Type A,FLUAV,Fowl Plague Virus,Human Influenza A Virus,Influenza Virus Type A,Influenza Viruses Type A,Myxovirus influenzae-A hominis,Myxovirus influenzae-A suis,Myxovirus pestis galli,Orthomyxovirus Type A,Orthomyxovirus Type A, Avian,Orthomyxovirus Type A, Human,Orthomyxovirus Type A, Porcine,Pestis galli Myxovirus,Fowl Plague Viruses,Influenza A viruses,Myxovirus influenzae A hominis,Myxovirus influenzae A suis,Myxovirus, Pestis galli,Myxoviruses, Pestis galli,Pestis galli Myxoviruses,Plague Virus, Fowl,Virus, Fowl Plague
D002490 Central Nervous System The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges. Cerebrospinal Axis,Axi, Cerebrospinal,Axis, Cerebrospinal,Central Nervous Systems,Cerebrospinal Axi,Nervous System, Central,Nervous Systems, Central,Systems, Central Nervous
D002849 Chromatography, Gas Fractionation of a vaporized sample as a consequence of partition between a mobile gaseous phase and a stationary phase held in a column. Two types are gas-solid chromatography, where the fixed phase is a solid, and gas-liquid, in which the stationary phase is a nonvolatile liquid supported on an inert solid matrix. Chromatography, Gas-Liquid,Gas Chromatography,Chromatographies, Gas,Chromatographies, Gas-Liquid,Chromatography, Gas Liquid,Gas Chromatographies,Gas-Liquid Chromatographies,Gas-Liquid Chromatography
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005260 Female Females
D006734 Horse Diseases Diseases of domestic and wild horses of the species Equus caballus. Equine Diseases,Disease, Equine,Disease, Horse,Diseases, Equine,Diseases, Horse,Equine Disease,Horse Disease
D006736 Horses Large, hoofed mammals of the family EQUIDAE. Horses are active day and night with most of the day spent seeking and consuming food. Feeding peaks occur in the early morning and late afternoon, and there are several daily periods of rest. Equus caballus,Equus przewalskii,Horse, Domestic,Domestic Horse,Domestic Horses,Horse,Horses, Domestic
D000284 Administration, Oral The giving of drugs, chemicals, or other substances by mouth. Drug Administration, Oral,Administration, Oral Drug,Oral Administration,Oral Drug Administration,Administrations, Oral,Administrations, Oral Drug,Drug Administrations, Oral,Oral Administrations,Oral Drug Administrations

Related Publications

W A Rees, and J D Harkins, and W E Woods, and R A Blouin, and M Lu, and C Fenger, and R E Holland, and T M Chambers, and T Tobin
November 1990, Equine veterinary journal,
W A Rees, and J D Harkins, and W E Woods, and R A Blouin, and M Lu, and C Fenger, and R E Holland, and T M Chambers, and T Tobin
May 1977, American journal of veterinary research,
W A Rees, and J D Harkins, and W E Woods, and R A Blouin, and M Lu, and C Fenger, and R E Holland, and T M Chambers, and T Tobin
December 1986, Journal of veterinary pharmacology and therapeutics,
W A Rees, and J D Harkins, and W E Woods, and R A Blouin, and M Lu, and C Fenger, and R E Holland, and T M Chambers, and T Tobin
December 1986, The Veterinary record,
W A Rees, and J D Harkins, and W E Woods, and R A Blouin, and M Lu, and C Fenger, and R E Holland, and T M Chambers, and T Tobin
November 1969, Lancet (London, England),
W A Rees, and J D Harkins, and W E Woods, and R A Blouin, and M Lu, and C Fenger, and R E Holland, and T M Chambers, and T Tobin
March 1976, Lancet (London, England),
W A Rees, and J D Harkins, and W E Woods, and R A Blouin, and M Lu, and C Fenger, and R E Holland, and T M Chambers, and T Tobin
July 1992, Ugeskrift for laeger,
W A Rees, and J D Harkins, and W E Woods, and R A Blouin, and M Lu, and C Fenger, and R E Holland, and T M Chambers, and T Tobin
December 2011, Preventive veterinary medicine,
W A Rees, and J D Harkins, and W E Woods, and R A Blouin, and M Lu, and C Fenger, and R E Holland, and T M Chambers, and T Tobin
November 1992, Harefuah,
W A Rees, and J D Harkins, and W E Woods, and R A Blouin, and M Lu, and C Fenger, and R E Holland, and T M Chambers, and T Tobin
August 1997, The Journal of family practice,
Copied contents to your clipboard!