Interneurons in the hippocampal dentate gyrus: an in vivo intracellular study. 1997

A Sik, and M Penttonen, and G Buzsáki
Center for Molecular and Behavioral Neuroscience, Rutgers, State University of New Jersey, Newark 07102, USA.

Interneurons in the dentate area were characterized physiologically and filled with biocytin in urethane-anaesthetized rats. On the basis of axonal targets the following groups could be distinguished. (i) Large multipolar interneurons with spiny dendrites in the deep hilar region densely innervated the outer molecular layer and contacted both granule cells and parvalbumin-positive neurons (hilar interneuron with perforant pathway-associated axon terminals; HIPP cells). (ii) A pyramidal-shaped neuron with a cell body located in the subgranular layer innervated mostly the inner molecular layer and the granule cell layer (hilar interneuron with commissural-associational pathway-associated axon terminals; HICAP cell). It contacted both granule cells and interneurons. Axon collaterals of HIPP and HICAP neurons covered virtually the entire septo-temporal extent of the dorsal dentate gyrus. (iii) Calbindin-immunoreactive neurons with horizontal dendrites in stratum oriens of the CA3c region gave rise to a rich axon arbor in strata oriens, pyramidale and radiatum and innervated almost the entire extent of the dorsal hippocampus, with some collaterals entering the subicular area (putative trilaminar cell). (iv) Hilar basket cells innervated mostly the granule cell layer and to some extent the inner molecular layer and the CA3c pyramidal layer. HIPP and trilaminar interneurons could be antidromically activated by stimulation of the fimbria. Only the HICAP cells could be monosynaptically discharged by the perforant path input. All interneurons examined showed phase-locked activity to the extracellularly recorded theta/gamma oscillations or to irregular dentate electroencephalogram spikes. These observations indicate that the interconnected interneuronal system plays a critical role in coordinating population of the dentate gyrus and Ammon's hom.

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018891 Dentate Gyrus GRAY MATTER situated above the GYRUS HIPPOCAMPI. It is composed of three layers. The molecular layer is continuous with the HIPPOCAMPUS in the hippocampal fissure. The granular layer consists of closely arranged spherical or oval neurons, called GRANULE CELLS, whose AXONS pass through the polymorphic layer ending on the DENDRITES of PYRAMIDAL CELLS in the hippocampus. Dentate Fascia,Fascia Dentata,Gyrus Dentatus,Area Dentata,CA4 Field of Hippocampal Formation,CA4 Region, Hippocampal,CA4 of Lorente de No,Cornu Ammonis 4 Area,Hilus Gyri Dentati,Hilus of Dentate Gyrus,Hilus of the Fascia Dentata,Hippocampal CA4 Field,Hippocampal Sector CA4,Area Dentatas,CA4 Field, Hippocampal,CA4, Hippocampal Sector,Dentata, Area,Dentata, Fascia,Dentatas, Area,Fascia, Dentate,Field, Hippocampal CA4,Gyrus, Dentate,Hippocampal CA4 Region,Region, Hippocampal CA4,Sector CA4, Hippocampal

Related Publications

A Sik, and M Penttonen, and G Buzsáki
January 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A Sik, and M Penttonen, and G Buzsáki
November 2015, Human brain mapping,
A Sik, and M Penttonen, and G Buzsáki
January 2017, Frontiers in neuroanatomy,
A Sik, and M Penttonen, and G Buzsáki
July 2001, Proceedings of the National Academy of Sciences of the United States of America,
A Sik, and M Penttonen, and G Buzsáki
June 1995, The European journal of neuroscience,
A Sik, and M Penttonen, and G Buzsáki
October 1995, The European journal of neuroscience,
A Sik, and M Penttonen, and G Buzsáki
February 2014, Hippocampus,
Copied contents to your clipboard!