Molecular requirements for bi-directional movement of phagosomes along microtubules. 1997

A Blocker, and F F Severin, and J K Burkhardt, and J B Bingham, and H Yu, and J C Olivo, and T A Schroer, and A A Hyman, and G Griffiths
Cell Biology Programme, European Molecular Biology Laboratory, Heidelberg, Germany. ablocker@pasteur.fr

Microtubules facilitate the maturation of phagosomes by favoring their interactions with endocytic compartments. Here, we show that phagosomes move within cells along tracks of several microns centrifugally and centripetally in a pH- and microtubule-dependent manner. Phagosome movement was reconstituted in vitro and required energy, cytosol and membrane proteins of this organelle. The activity or presence of these phagosome proteins was regulated as the organelle matured, with "late" phagosomes moving threefold more frequently than "early" ones. The majority of moving phagosomes were minus-end directed; the remainder moved towards microtubule plus-ends and a small subset moved bi-directionally. Minus-end movement showed pharmacological characteristics expected for dyneins, was inhibited by immunodepletion of cytoplasmic dynein and could be restored by addition of cytoplasmic dynein. Plus-end movement displayed pharmacological properties of kinesin, was inhibited partially by immunodepletion of kinesin and fully by addition of an anti-kinesin IgG. Immunodepletion of dynactin, a dynein-activating complex, inhibited only minus-end directed motility. Evidence is provided for a dynactin-associated kinase required for dynein-mediated vesicle transport. Movement in both directions was inhibited by peptide fragments from kinectin (a putative kinesin membrane receptor), derived from the region to which a motility-blocking antibody binds. Polypeptide subunits from these microtubule-based motility factors were detected on phagosomes by immunoblotting or immunoelectron microscopy. This is the first study using a single in vitro system that describes the roles played by kinesin, kinectin, cytoplasmic dynein, and dynactin in the microtubule-mediated movement of a purified membrane organelle.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007840 Latex A milky, product excreted from the latex canals of a variety of plant species that contain cauotchouc. Latex is composed of 25-35% caoutchouc, 60-75% water, 2% protein, 2% resin, 1.5% sugar & 1% ash. RUBBER is made by the removal of water from latex.(From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed). Hevein proteins are responsible for LATEX HYPERSENSITIVITY. Latexes are used as inert vehicles to carry antibodies or antigens in LATEX FIXATION TESTS. Latices,Latice
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008863 Microspheres Small uniformly-sized spherical particles, of micrometer dimensions, frequently labeled with radioisotopes or various reagents acting as tags or markers. Latex Beads,Latex Particles,Latex Spheres,Microbeads,Bead, Latex,Beads, Latex,Latex Bead,Latex Particle,Latex Sphere,Microbead,Microsphere,Particle, Latex,Particles, Latex,Sphere, Latex,Spheres, Latex
D008869 Microtubule-Associated Proteins High molecular weight proteins found in the MICROTUBULES of the cytoskeletal system. Under certain conditions they are required for TUBULIN assembly into the microtubules and stabilize the assembled microtubules. Ensconsin,Epithelial MAP, 115 kDa,Epithelial Microtubule-Associate Protein, 115 kDa,MAP4,Microtubule Associated Protein,Microtubule Associated Protein 4,Microtubule Associated Protein 7,Microtubule-Associated Protein,Microtubule-Associated Protein 7,E-MAP-115,MAP1 Microtubule-Associated Protein,MAP2 Microtubule-Associated Protein,MAP3 Microtubule-Associated Protein,Microtubule Associated Proteins,Microtubule-Associated Protein 1,Microtubule-Associated Protein 2,Microtubule-Associated Protein 3,7, Microtubule-Associated Protein,Associated Protein, Microtubule,E MAP 115,Epithelial Microtubule Associate Protein, 115 kDa,MAP1 Microtubule Associated Protein,MAP2 Microtubule Associated Protein,MAP3 Microtubule Associated Protein,Microtubule Associated Protein 1,Microtubule Associated Protein 2,Microtubule Associated Protein 3,Microtubule-Associated Protein, MAP1,Microtubule-Associated Protein, MAP2,Microtubule-Associated Protein, MAP3,Protein 7, Microtubule-Associated,Protein, Microtubule Associated,Protein, Microtubule-Associated
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D010588 Phagosomes Membrane-bound cytoplasmic vesicles formed by invagination of phagocytized material. They fuse with lysosomes to form phagolysosomes in which the hydrolytic enzymes of the lysosome digest the phagocytized material. Phagolysosomes,Phagolysosome,Phagosome
D010770 Phosphotransferases A rather large group of enzymes comprising not only those transferring phosphate but also diphosphate, nucleotidyl residues, and others. These have also been subdivided according to the acceptor group. (From Enzyme Nomenclature, 1992) EC 2.7. Kinases,Phosphotransferase,Phosphotransferases, ATP,Transphosphorylase,Transphosphorylases,Kinase,ATP Phosphotransferases
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell

Related Publications

A Blocker, and F F Severin, and J K Burkhardt, and J B Bingham, and H Yu, and J C Olivo, and T A Schroer, and A A Hyman, and G Griffiths
January 1996, Annual review of physiology,
A Blocker, and F F Severin, and J K Burkhardt, and J B Bingham, and H Yu, and J C Olivo, and T A Schroer, and A A Hyman, and G Griffiths
January 1986, Annals of the New York Academy of Sciences,
A Blocker, and F F Severin, and J K Burkhardt, and J B Bingham, and H Yu, and J C Olivo, and T A Schroer, and A A Hyman, and G Griffiths
June 1997, FEBS letters,
A Blocker, and F F Severin, and J K Burkhardt, and J B Bingham, and H Yu, and J C Olivo, and T A Schroer, and A A Hyman, and G Griffiths
December 1996, Journal of muscle research and cell motility,
A Blocker, and F F Severin, and J K Burkhardt, and J B Bingham, and H Yu, and J C Olivo, and T A Schroer, and A A Hyman, and G Griffiths
March 1997, Current biology : CB,
A Blocker, and F F Severin, and J K Burkhardt, and J B Bingham, and H Yu, and J C Olivo, and T A Schroer, and A A Hyman, and G Griffiths
September 1992, Journal of cell science,
A Blocker, and F F Severin, and J K Burkhardt, and J B Bingham, and H Yu, and J C Olivo, and T A Schroer, and A A Hyman, and G Griffiths
January 2013, PloS one,
A Blocker, and F F Severin, and J K Burkhardt, and J B Bingham, and H Yu, and J C Olivo, and T A Schroer, and A A Hyman, and G Griffiths
January 2013, PloS one,
A Blocker, and F F Severin, and J K Burkhardt, and J B Bingham, and H Yu, and J C Olivo, and T A Schroer, and A A Hyman, and G Griffiths
February 2012, Bioarchitecture,
A Blocker, and F F Severin, and J K Burkhardt, and J B Bingham, and H Yu, and J C Olivo, and T A Schroer, and A A Hyman, and G Griffiths
September 2018, The Journal of experimental biology,
Copied contents to your clipboard!