Halothane-induced dilatation of intraparenchymal arterioles in rat brain slices: a comparison to sodium nitroprusside. 1997

C P Harkin, and A G Hudetz, and W T Schmeling, and J P Kampine, and N E Farber
Department of Anesthesiology, Medical College of Wisconsin, Children's Hospital of Wisconsin, Milwaukee 53226, USA.

BACKGROUND Halothane is a potent dilator of cerebral arteries. The predominant site of cerebrovascular resistance is thought to be intracerebral arterioles, and the effects of halothane on these vessels were not previously examined. This study compared the effects of halothane with those of the vasodilator and nitric oxide donor, sodium nitroprusside, on intraparenchymal microvessel responsiveness in a brain slice preparation. METHODS Anesthetized Sprague-Dawley rats underwent thoracotomy and intracardiac perfusion and then were decapitated. Hippocampal brain slices were prepared and placed in a perfusion/recording chamber and superfused with artificial cerebrospinal fluid. An arteriole was located within the brain parenchyma and its diameter was monitored with videomicroscopy before, during, and after various concentrations of halothane or sodium nitroprusside were equilibrated in the perfusate. All vessels were preconstricted with prostaglandin F2 alpha before halothane or sodium nitroprusside treatment. An observer blinded to treatment analyzed vessel diameter changes with a computerized videomicrometer. RESULTS Baseline microvessel diameter was 18 +/- 2 microns in the halothane group (n = 14) and 15 +/- 1 microns in the sodium nitroprusside group (n = 15). Prostaglandin F2 alpha (0.5 micron) preconstricted vessels by approximately 15% from resting diameter in both groups. Halothane significantly and dose dependently dilated intracerebral microvessels by 54% +/- 6%, 74% +/- 8%, 108% +/- 13%, and 132% +/- 7% (normalized to the preconstricted diameter) at 0.5%, 1.0%, and 2.5% halothane, respectively. This dilatation corresponds to a decrease in a calculated index of cerebrovascular resistance index of up to 117% +/- 2% at 2.5% halothane. Sodium nitroprusside, in concentrations ranging from 10(-8) to 10(-3)M, also dose dependently dilated these intraparenchymal vessels by 129% +/- 7% at the highest concentration. These alterations in microvessel diameter corresponded to a decrease in the cerebrovascular resistance index of up to 116 +/- 4% for the largest dose. CONCLUSIONS Halothane produces dose-dependent vasodilatation of intraparenchymal cerebral microvessels, thus predicting marked decreases in cerebrovascular resistance in this in vitro brain slice preparation. The effects of halothane on these cerebral microvessels are similar to those of the potent vasodilator sodium nitroprusside. These findings suggest that direct effects of halathane on cerebral microvessels diameter contribute substantially to alterations in cerebrovascular resistance and flow produced by this agent.

UI MeSH Term Description Entries
D008297 Male Males
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D009599 Nitroprusside A powerful vasodilator used in emergencies to lower blood pressure or to improve cardiac function. It is also an indicator for free sulfhydryl groups in proteins. Nitroferricyanide,Sodium Nitroprusside,Cyanonitrosylferrate,Ketostix,Naniprus,Nipride,Nipruton,Nitriate,Nitropress,Nitroprussiat Fides,Nitroprusside, Disodium Salt,Nitroprusside, Disodium Salt, Dihydrate,Disodium Salt Nitroprusside,Nitroprusside, Sodium
D002560 Cerebrovascular Circulation The circulation of blood through the BLOOD VESSELS of the BRAIN. Brain Blood Flow,Regional Cerebral Blood Flow,Cerebral Blood Flow,Cerebral Circulation,Cerebral Perfusion Pressure,Circulation, Cerebrovascular,Blood Flow, Brain,Blood Flow, Cerebral,Brain Blood Flows,Cerebral Blood Flows,Cerebral Circulations,Cerebral Perfusion Pressures,Circulation, Cerebral,Flow, Brain Blood,Flow, Cerebral Blood,Perfusion Pressure, Cerebral,Pressure, Cerebral Perfusion
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006221 Halothane A nonflammable, halogenated, hydrocarbon anesthetic that provides relatively rapid induction with little or no excitement. Analgesia may not be adequate. NITROUS OXIDE is often given concomitantly. Because halothane may not produce sufficient muscle relaxation, supplemental neuromuscular blocking agents may be required. (From AMA Drug Evaluations Annual, 1994, p178) 1,1,1-Trifluoro-2-Chloro-2-Bromoethane,Fluothane,Ftorotan,Narcotan
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001160 Arterioles The smallest divisions of the arteries located between the muscular arteries and the capillaries. Arteriole
D014664 Vasodilation The physiological widening of BLOOD VESSELS by relaxing the underlying VASCULAR SMOOTH MUSCLE. Vasodilatation,Vasorelaxation,Vascular Endothelium-Dependent Relaxation,Endothelium-Dependent Relaxation, Vascular,Relaxation, Vascular Endothelium-Dependent,Vascular Endothelium Dependent Relaxation
D014665 Vasodilator Agents Drugs used to cause dilation of the blood vessels. Vasoactive Antagonists,Vasodilator,Vasodilator Agent,Vasodilator Drug,Vasorelaxant,Vasodilator Drugs,Vasodilators,Vasorelaxants,Agent, Vasodilator,Agents, Vasodilator,Antagonists, Vasoactive,Drug, Vasodilator,Drugs, Vasodilator

Related Publications

C P Harkin, and A G Hudetz, and W T Schmeling, and J P Kampine, and N E Farber
May 1998, Neuroreport,
C P Harkin, and A G Hudetz, and W T Schmeling, and J P Kampine, and N E Farber
May 1997, Neuroreport,
C P Harkin, and A G Hudetz, and W T Schmeling, and J P Kampine, and N E Farber
May 1993, Experimental neurology,
C P Harkin, and A G Hudetz, and W T Schmeling, and J P Kampine, and N E Farber
March 1989, Journal of cardiovascular pharmacology,
C P Harkin, and A G Hudetz, and W T Schmeling, and J P Kampine, and N E Farber
November 2000, Neuroscience letters,
C P Harkin, and A G Hudetz, and W T Schmeling, and J P Kampine, and N E Farber
December 1995, Anesthesiology,
C P Harkin, and A G Hudetz, and W T Schmeling, and J P Kampine, and N E Farber
July 1981, Anesthesiology,
C P Harkin, and A G Hudetz, and W T Schmeling, and J P Kampine, and N E Farber
January 1980, Acta anaesthesiologica Belgica,
C P Harkin, and A G Hudetz, and W T Schmeling, and J P Kampine, and N E Farber
April 1983, Acta anaesthesiologica Scandinavica,
C P Harkin, and A G Hudetz, and W T Schmeling, and J P Kampine, and N E Farber
November 1974, Anesthesiology,
Copied contents to your clipboard!