Halothane and enflurane attenuate pulmonary vasodilation mediated by adenosine triphosphate-sensitive potassium channels compared to the conscious state. 1997

S Seki, and K Sato, and M Nakayama, and P A Murray
Center for Anesthesiology Research, Cleveland Clinic Foundation, Ohio 44195, USA.

BACKGROUND Adenosine triphosphate (ATP)-sensitive potassium (k+ATP) channels play an important role in pulmonary vasoregulation. However, the effects of volatile anesthetics on k+ATP channel-mediated pulmonary vasoregulation have not been elucidated. The purpose of the present study was to investigate the effects of halothane and enflurane anesthesia on the pulmonary vasodilator response to the selective k+ATP channel agonist lemakalim (BRJ38227) compared with that measured in the conscious state. The authors also investigated the extent to which endogenous neurohumoral vasoconstrictor mechanisms modulate the vasodilator response to k+ATP channel activation. METHODS Nineteen conditioned, male mongrel dogs were chronically instrumented to measure the left pulmonary vascular pressure-flow (LPQ) relationship. LPQ plots were generated by continuously measuring the pulmonary vascular pressure gradient (pulmonary arterial pressure-left atrial pressure) and left pulmonary blood flow during gradula (approximately 1 min) inflation of a hydraulic occluder implanted around the right main pulmonary artery. After preconstriction with the thromboxane analog, U46619 (9,11-dideoxy-11 alpha, 9 alpha-epoxymethano-prostaglandin F2 alpha), the pulmonary vascular dose-response relationship for the k+ATP agonist lemakalim was assessed in the conscious and halothane-anesthetized states and also in the conscious and enflurane-anesthetized states. This protocol was repeated in conscious and halothane-anesthetized dogs after combined neurohumoral block with antagonists of sympathetic alpha 1 adrenoreceptors, arginine vasopressin V1-receptors, and angiotensin II receptors. The effect of the k+ATP antagonist glybenclamide on the baseline LPQ relationship and on the lemakalim dose-response relationship also was assessed in conscious dogs. RESULTS Compared with the conscious state, halothane, enflurane and glybenclamide had no net effect on the baseline LPQ relationship. In contrast, halothane and enflurane attenuated (P < 0.05) the pulmonary vasodilator response to lemakalim compared with the conscious state. Glybenclamide also caused a rightward shift (P < 0.05) in the lemakalim dose-response relationship. Combined neurohumoral block did not modulate the vasodilator response to lemakalim in the conscious state. The halothane-induced attenuation of the vasodilator response to lemakalim was apparent after combined neurohumoral block. CONCLUSIONS These results indicate that halothane and enflurane act to reduce the magnitude of K+ATP channel-mediated pulmonary vasodilation. Reflex pulmonary vasoconstriction resulting from K+ATP mediated systematic hypotension does not alter the magnitude of the pulmonary vasodilator response to lemakalim nor is it responsible for the attenuated response to K+ATP channel activation during halothane anesthesia.

UI MeSH Term Description Entries
D008297 Male Males
D011652 Pulmonary Circulation The circulation of the BLOOD through the LUNGS. Pulmonary Blood Flow,Respiratory Circulation,Circulation, Pulmonary,Circulation, Respiratory,Blood Flow, Pulmonary,Flow, Pulmonary Blood,Pulmonary Blood Flows
D011758 Pyrroles Azoles of one NITROGEN and two double bonds that have aromatic chemical properties. Pyrrole
D003243 Consciousness Sense of awareness of self and of the environment. Consciousnesses
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004737 Enflurane An extremely stable inhalation anesthetic that allows rapid adjustments of anesthesia depth with little change in pulse or respiratory rate. Alyrane,Enfran,Enlirane,Ethrane,Etran
D005905 Glyburide An antidiabetic sulfonylurea derivative with actions like those of chlorpropamide Glibenclamide,Daonil,Diabeta,Euglucon 5,Euglucon N,Glybenclamide,HB-419,HB-420,Maninil,Micronase,Neogluconin,HB 419,HB 420,HB419,HB420
D006221 Halothane A nonflammable, halogenated, hydrocarbon anesthetic that provides relatively rapid induction with little or no excitement. Analgesia may not be adequate. NITROUS OXIDE is often given concomitantly. Because halothane may not produce sufficient muscle relaxation, supplemental neuromuscular blocking agents may be required. (From AMA Drug Evaluations Annual, 1994, p178) 1,1,1-Trifluoro-2-Chloro-2-Bromoethane,Fluothane,Ftorotan,Narcotan
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2

Related Publications

S Seki, and K Sato, and M Nakayama, and P A Murray
January 1988, Annual review of neuroscience,
S Seki, and K Sato, and M Nakayama, and P A Murray
June 2003, Circulation,
S Seki, and K Sato, and M Nakayama, and P A Murray
November 1990, Stroke,
S Seki, and K Sato, and M Nakayama, and P A Murray
October 2006, American journal of physiology. Lung cellular and molecular physiology,
S Seki, and K Sato, and M Nakayama, and P A Murray
February 2016, Molecular medicine reports,
S Seki, and K Sato, and M Nakayama, and P A Murray
April 1999, Endocrine reviews,
Copied contents to your clipboard!