Transmission dynamics and host-parasite interactions of Trichostrongylus tenuis in red grouse (Lagopus lagopus scoticus). 1997

P J Hudson, and A P Dobson
Upland Research Group, Game Conservancy Trust, Newtonmore, Scotland, U.K.

Two components of the transmission dynamics of Trichostrongylus tenuis in red grouse are examined and quantified, namely parasite transmission rate and density-dependent reductions in egg production. Age-intensity data for birds of known age suggest that the rate of parasite uptake increases during the first 6 mo of a bird's life and this increase reflects an increase in feeding rate with age and exhibits no signs of self-cure. Analysis of these age-intensity curves permits us to estimate the transmission rate of the free-living infective stages. Reinfection rates of adults treated to reduce parasite intensities were not significantly different from infection rates of naive immature grouse. Secondary infections continued to rise over a period of 18 mo and this suggests that there is no strong host-mediated response against the parasite. Any density-dependent reduction in parasite fecundity is probably very weak and would act through interspecific competition between parasites. Initial analysis of worm egg production in relation to the intensity of worm infection found weak evidence of density-dependent suppression of egg production at high worm intensities. However, a more rigorous analysis found that such a relationship suffered from Type I errors and was a consequence of the aggregated distribution of the parasites. Any density-dependent suppression of parasite egg production is too weak to be detected and would only occur at high worm intensities. The potential density-dependent reductions in fecundity on the population dynamics of T. tenuis and red grouse are examined using a mathematical model. The model suggests that the presence of density-dependent reductions in worm fecundity could produce significant reductions in the propensity of the grouse-nematode system to exhibit population cycles. The sustained cycles observed in the long-term dynamics of the grouse populations in the study area suggest that density-dependent reductions in worm fecundity and establishment are either absent or only operating at levels that are not detectable in field studies.

UI MeSH Term Description Entries
D008297 Male Males
D010270 Parasite Egg Count Determination of parasite eggs in feces. Count, Parasite Egg,Counts, Parasite Egg,Egg Count, Parasite,Egg Counts, Parasite,Parasite Egg Counts
D012008 Recurrence The return of a sign, symptom, or disease after a remission. Recrudescence,Relapse,Recrudescences,Recurrences,Relapses
D002432 Cecum The blind sac or outpouching area of the LARGE INTESTINE that is below the entrance of the SMALL INTESTINE. It has a worm-like extension, the vermiform APPENDIX. Cecums
D005260 Female Females
D005298 Fertility The capacity to conceive or to induce conception. It may refer to either the male or female. Fecundity,Below Replacement Fertility,Differential Fertility,Fecundability,Fertility Determinants,Fertility Incentives,Fertility Preferences,Fertility, Below Replacement,Marital Fertility,Natural Fertility,Subfecundity,World Fertility Survey,Determinant, Fertility,Determinants, Fertility,Fertility Determinant,Fertility Incentive,Fertility Preference,Fertility Survey, World,Fertility Surveys, World,Fertility, Differential,Fertility, Marital,Fertility, Natural,Preference, Fertility,Preferences, Fertility,Survey, World Fertility,Surveys, World Fertility,World Fertility Surveys
D006790 Host-Parasite Interactions The relationship between an invertebrate and another organism (the host), one of which lives at the expense of the other. Traditionally excluded from definition of parasites are pathogenic BACTERIA; FUNGI; VIRUSES; and PLANTS; though they may live parasitically. Host-Parasite Relations,Parasite-Host Relations,Host-Parasite Relationship,Parasite-Host Interactions,Host Parasite Interactions,Host Parasite Relations,Host Parasite Relationship,Host-Parasite Interaction,Host-Parasite Relation,Host-Parasite Relationships,Interaction, Host-Parasite,Interaction, Parasite-Host,Interactions, Host-Parasite,Interactions, Parasite-Host,Parasite Host Interactions,Parasite Host Relations,Parasite-Host Interaction,Parasite-Host Relation,Relation, Host-Parasite,Relation, Parasite-Host,Relations, Host-Parasite,Relations, Parasite-Host,Relationship, Host-Parasite,Relationships, Host-Parasite
D000367 Age Factors Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time. Age Reporting,Age Factor,Factor, Age,Factors, Age
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001715 Bird Diseases Diseases of birds not considered poultry, therefore usually found in zoos, parks, and the wild. The concept is differentiated from POULTRY DISEASES which is for birds raised as a source of meat or eggs for human consumption, and usually found in barnyards, hatcheries, etc. Avian Diseases,Avian Disease,Bird Disease,Disease, Avian,Disease, Bird,Diseases, Avian,Diseases, Bird

Related Publications

P J Hudson, and A P Dobson
August 2014, The Veterinary record,
Copied contents to your clipboard!