GABAA receptor subunit expression changes in the rat cerebellum and cerebral cortex during aging. 1997

A Gutiérrez, and Z U Khan, and C P Miralles, and A K Mehta, and D Ruano, and F Araujo, and J Vitorica, and A L De Blas
Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City 64110-2499, USA.

Significant aging-related decreased expression of various GABAAR subunit mRNAs (alpha 1, gamma 2, beta 2, beta 3 and sigma) was found in both cerebellum and cerebral cortex using quantitative dot blot and in situ hybridization techniques. Contrary to the other subunits, the alpha 6 mRNA expression was significantly increased in the aged cerebellum. Parallel age-related changes in protein expression for gamma 2 and beta 2/3 (decrease) and alpha 6 (increase) were revealed in cerebellum by quantitative immunocytochemistry. However, no significant changes in alpha 1 protein expression nor in the number or affinity of [3H]zolpidem binding sites were detected in cerebellum even though alpha 1 mRNA expression was significantly decreased in the aged rat. Age-related increased expression of alpha 6 mRNA and protein in the cerebellum was accompanied by no significant changes in the number of diazepam-insensitive [3H]Ro15-4513 binding sites. In the cerebral cortex, no changes in the protein expression of the main GABAA receptor subunits (alpha 1, gamma 2 and beta 2/3) were observed which contrasted with the age-related decreased expression of the corresponding mRNAs. No significant changes in the number or affinity of [3H]zolpidem binding sites were observed in the cerebral cortex. Thus, age-related changes in the mRNA expression of a particular subunit does not necessarily lead to similar changes in protein or assembly into mature GABAA receptors. The results reveal the existence of complex regulatory mechanisms of GABAA receptor expression, at the transcriptional, translational and post-translational and/or assembly levels, which vary with the subunit and brain area.

UI MeSH Term Description Entries
D008297 Male Males
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D015345 Oligonucleotide Probes Synthetic or natural oligonucleotides used in hybridization studies in order to identify and study specific nucleic acid fragments, e.g., DNA segments near or within a specific gene locus or gene. The probe hybridizes with a specific mRNA, if present. Conventional techniques used for testing for the hybridization product include dot blot assays, Southern blot assays, and DNA:RNA hybrid-specific antibody tests. Conventional labels for the probe include the radioisotope labels 32P and 125I and the chemical label biotin. Oligodeoxyribonucleotide Probes,Oligonucleotide Probe,Oligoribonucleotide Probes,Probe, Oligonucleotide,Probes, Oligodeoxyribonucleotide,Probes, Oligonucleotide,Probes, Oligoribonucleotide

Related Publications

A Gutiérrez, and Z U Khan, and C P Miralles, and A K Mehta, and D Ruano, and F Araujo, and J Vitorica, and A L De Blas
October 1991, European journal of pharmacology,
A Gutiérrez, and Z U Khan, and C P Miralles, and A K Mehta, and D Ruano, and F Araujo, and J Vitorica, and A L De Blas
May 1997, Canadian journal of physiology and pharmacology,
A Gutiérrez, and Z U Khan, and C P Miralles, and A K Mehta, and D Ruano, and F Araujo, and J Vitorica, and A L De Blas
July 1994, Journal of neurochemistry,
A Gutiérrez, and Z U Khan, and C P Miralles, and A K Mehta, and D Ruano, and F Araujo, and J Vitorica, and A L De Blas
July 2006, Brain research,
A Gutiérrez, and Z U Khan, and C P Miralles, and A K Mehta, and D Ruano, and F Araujo, and J Vitorica, and A L De Blas
February 1994, The European journal of neuroscience,
A Gutiérrez, and Z U Khan, and C P Miralles, and A K Mehta, and D Ruano, and F Araujo, and J Vitorica, and A L De Blas
December 1994, The Journal of comparative neurology,
A Gutiérrez, and Z U Khan, and C P Miralles, and A K Mehta, and D Ruano, and F Araujo, and J Vitorica, and A L De Blas
May 2013, Neurobiology of aging,
A Gutiérrez, and Z U Khan, and C P Miralles, and A K Mehta, and D Ruano, and F Araujo, and J Vitorica, and A L De Blas
September 1995, Brain research. Developmental brain research,
A Gutiérrez, and Z U Khan, and C P Miralles, and A K Mehta, and D Ruano, and F Araujo, and J Vitorica, and A L De Blas
April 1999, Brain research. Molecular brain research,
A Gutiérrez, and Z U Khan, and C P Miralles, and A K Mehta, and D Ruano, and F Araujo, and J Vitorica, and A L De Blas
June 2018, Journal of neurochemistry,
Copied contents to your clipboard!