Corticotropin-releasing factor in antinociception and inflammation. 1997

M Schäfer, and S A Mousa, and C Stein
Behavioral Pharmacology and Genetics Section, National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA. m.schaefer@lrz.uni-muenchen.de

Corticotropin-releasing factor (CRF) plays a major role at the level of the hypothalamus and pituitary to control the body's response mechanisms to stressful stimuli. The recent discovery of CRF outside the central nervous system suggests that CRF may well play a similar role in peripheral tissues, most likely in a paracrine manner. While its effects in many other peripheral tissues is not known yet, CRF and its receptors are upregulated in inflammatory pain states pointing to a key role under these circumstances. Indeed, locally expressed CRF seems to act on CRF receptors on immune cells which have migrated into the area of the inflamed tissue, and induce the release of opioid peptides synthesized within these immune cells. These opioids subsequently act on peripheral opioid receptors located on peripheral sensory nerves to inhibit the transmission of painful stimuli. CRF may also affect the inflammatory response; however, these data are still controversial. The peripheral paracrine effects of CRF may be similar to those of hypothalamic CRF, i.e., to counterbalance local stressful events, such as inflammation and pain, so that they do not threaten the homeostasis of the body. Interestingly, CRF-like peptides have been identified not only in mammalians, but also in species such as the frog (Stenzel-Poore et al., 1992, Mol. Endocrinol. 6, 1716) and the teleost fish (Okawara et al., 1988, Proc. Natl. Acad. Sci. USA 85, 8439) indicating that this is a peptide that has been conserved over a long period (200 million years) across species (Lederis et al., 1990, Prog. Clin. Biol. Res. 342, 467) and that the release of ACTH-like peptides by peptides of the CRF family may represent an ancestral type of stress response (Ottaviani et al., 1992, Gen. Comp. Endocrinol. 87, 354; Tran et al., 1990, Gen. Comp. Endocrinol. 78, 351).

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D010146 Pain An unpleasant sensation induced by noxious stimuli which are detected by NERVE ENDINGS of NOCICEPTIVE NEURONS. Suffering, Physical,Ache,Pain, Burning,Pain, Crushing,Pain, Migratory,Pain, Radiating,Pain, Splitting,Aches,Burning Pain,Burning Pains,Crushing Pain,Crushing Pains,Migratory Pain,Migratory Pains,Pains, Burning,Pains, Crushing,Pains, Migratory,Pains, Radiating,Pains, Splitting,Physical Suffering,Physical Sufferings,Radiating Pain,Radiating Pains,Splitting Pain,Splitting Pains,Sufferings, Physical
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D003346 Corticotropin-Releasing Hormone A peptide of about 41 amino acids that stimulates the release of ADRENOCORTICOTROPIC HORMONE. CRH is synthesized by neurons in the PARAVENTRICULAR NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, CRH stimulates the release of ACTH from the PITUITARY GLAND. CRH can also be synthesized in other tissues, such as PLACENTA; ADRENAL MEDULLA; and TESTIS. ACTH-Releasing Hormone,CRF-41,Corticotropin-Releasing Factor,Corticotropin-Releasing Hormone-41,ACTH-Releasing Factor,CRF (ACTH),Corticoliberin,Corticotropin-Releasing Factor-41,ACTH Releasing Factor,ACTH Releasing Hormone,Corticotropin Releasing Factor,Corticotropin Releasing Factor 41,Corticotropin Releasing Hormone,Corticotropin Releasing Hormone 41
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000698 Analgesia Methods of PAIN relief that may be used with or in place of ANALGESICS. Analgesias
D000701 Analgesics, Opioid Compounds with activity like OPIATE ALKALOIDS, acting at OPIOID RECEPTORS. Properties include induction of ANALGESIA or NARCOSIS. Opioid,Opioid Analgesic,Opioid Analgesics,Opioids,Full Opioid Agonists,Opioid Full Agonists,Opioid Mixed Agonist-Antagonists,Opioid Partial Agonists,Partial Opioid Agonists,Agonist-Antagonists, Opioid Mixed,Agonists, Full Opioid,Agonists, Opioid Full,Agonists, Opioid Partial,Agonists, Partial Opioid,Analgesic, Opioid,Full Agonists, Opioid,Mixed Agonist-Antagonists, Opioid,Opioid Agonists, Full,Opioid Agonists, Partial,Opioid Mixed Agonist Antagonists,Partial Agonists, Opioid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M Schäfer, and S A Mousa, and C Stein
March 1991, The Journal of pharmacology and experimental therapeutics,
M Schäfer, and S A Mousa, and C Stein
November 1989, European journal of pharmacology,
M Schäfer, and S A Mousa, and C Stein
February 1990, The American journal of physiology,
M Schäfer, and S A Mousa, and C Stein
June 1993, European journal of pharmacology,
M Schäfer, and S A Mousa, and C Stein
May 1998, Annals of the New York Academy of Sciences,
M Schäfer, and S A Mousa, and C Stein
January 2015, Journal of neurogastroenterology and motility,
M Schäfer, and S A Mousa, and C Stein
January 1990, Annals of the New York Academy of Sciences,
M Schäfer, and S A Mousa, and C Stein
January 1982, Endocrine reviews,
M Schäfer, and S A Mousa, and C Stein
May 1988, Deutsche medizinische Wochenschrift (1946),
M Schäfer, and S A Mousa, and C Stein
March 1985, Presse medicale (Paris, France : 1983),
Copied contents to your clipboard!