Potentiation of phototactic suppression in Hermissenda by a chemosensory stimulus during compound conditioning. 1997

J Farley, and H Reasoner, and M Janssen
Department of Psychology, Indiana University Bloomington, 47405, USA. farleyj@indiana.edu

Modifications of Hermissenda's phototactic behavior by compound pairings of light, scallop extract, and rotation were assessed. In general, the scallop extract potentiated phototactic suppression. Potentiation was dependent on (a) conjunctive presentations of scallop and light, (b) number of conditioning trials, and (c) scallop extract concentration. In related experiments, no second-order conditioning or sensory preconditioning of phototactic suppression was observed, indicating that within-compound associations did not contribute appreciably to potentiation. These results represent the first detailed analysis of compound conditioning in a mollusk using discrete presentations of well-characterized conditioned stimuli from distinct sensory modalities.

UI MeSH Term Description Entries
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008974 Mollusca A phylum of the kingdom Metazoa. Mollusca have soft, unsegmented bodies with an anterior head, a dorsal visceral mass, and a ventral foot. Most are encased in a protective calcareous shell. It includes the classes GASTROPODA; BIVALVIA; CEPHALOPODA; Aplacophora; Scaphopoda; Polyplacophora; and Monoplacophora. Molluscs,Mollusks,Mollusc,Molluscas,Mollusk
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009949 Orientation Awareness of oneself in relation to time, place and person. Cognitive Orientation,Mental Orientation,Psychological Orientation,Cognitive Orientations,Mental Orientations,Orientation, Cognitive,Orientation, Mental,Orientation, Psychological,Orientations,Orientations, Cognitive,Orientations, Mental,Orientations, Psychological,Psychological Orientations
D002628 Chemoreceptor Cells Cells specialized to detect chemical substances and relay that information centrally in the nervous system. Chemoreceptor cells may monitor external stimuli, as in TASTE and OLFACTION, or internal stimuli, such as the concentrations of OXYGEN and CARBON DIOXIDE in the blood. Chemoreceptive Cells,Cell, Chemoreceptive,Cell, Chemoreceptor,Cells, Chemoreceptive,Cells, Chemoreceptor,Chemoreceptive Cell,Chemoreceptor Cell
D003214 Conditioning, Classical Learning that takes place when a conditioned stimulus is paired with an unconditioned stimulus. Reflex, Conditioned,Classical Conditioning,Classical Conditionings,Conditioned Reflex,Conditionings, Classical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001070 Appetitive Behavior Animal searching behavior. The variable introductory phase of an instinctive behavior pattern or sequence, e.g., looking for food, or sequential courtship patterns prior to mating. Searching Behavior,Appetitive Behaviors,Behavior, Appetitive,Behavior, Searching,Behaviors, Appetitive,Behaviors, Searching,Searching Behaviors

Related Publications

J Farley, and H Reasoner, and M Janssen
August 1990, Behavioral neuroscience,
J Farley, and H Reasoner, and M Janssen
August 2004, Learning & behavior,
J Farley, and H Reasoner, and M Janssen
October 1986, Proceedings of the National Academy of Sciences of the United States of America,
J Farley, and H Reasoner, and M Janssen
February 1989, Brain research bulletin,
J Farley, and H Reasoner, and M Janssen
February 1971, Journal of comparative and physiological psychology,
J Farley, and H Reasoner, and M Janssen
January 1987, Physiology & behavior,
J Farley, and H Reasoner, and M Janssen
June 2006, The Biological bulletin,
Copied contents to your clipboard!