Rat liver cytochrome P450 metabolism of N-acetylbenzidine and N,N'-diacetylbenzidine. 1997

V M Lakshmi, and T V Zenser, and B B Davis
Veterans Administration Medical Center, St. Louis, MO 63125-4199, USA.

To provide the information necessary for assessing risk and preventing tumorigenesis, the metabolism of N-acetylbenzidine and N,N'-diacetylbenzidine was assessed with rat liver microsomes from control and beta-naphthoflavone-treated rats. The oxidation of [3H]N-acetylbenzidine to [3H]N'-hydroxy-N-acetylbenzidine (N'HA), [3H]N-hydroxy-N-acetylbenzidine (NHA), and 3H-ring oxidation products was assessed. For [3H]N,N'-diacetylbenzidine, the formation of [3H]N-hydroxy-N,N'-diacetylbenzidine (NHDA) and the 3H-ring oxidation product was assessed. With beta-naphthoflavone-treated microsomes, the rate of NHA formation was 8-fold more than observed with control. Although significant formation of ring-oxidation products was demonstrated, the formation of N'HA was at the limit of detection. With control microsomes, N'HA was a major metabolite with more N'HA (49 +/- 6 pmol/mg protein/min) produced than NHA (38 +/- 5). Whereas the oxidation of N,N'-diacetylbenzidine was not observed with control microsomes, significant formation of NHDA (421 +/- 49 pmol/mg protein/min) and ring-oxidation (182 +/- 28) product was observed with beta-naphthoflavone-treated microsomes. Metabolism of [3H]N-acetylbenzidine and [3H]N,N'-diacetylbenzidine by beta-naphthoflavone-treated microsomes was completely inhibited by the specific cytochrome P4501A1/1A2 inhibitors alpha-naphthoflavone and ellipticine at 10 microM. Except for the < 30% inhibition observed with the cytochrome P4502E1 inhibitor (disulfiram), inhibitors of cytochrome P4503A1/3A2 (troleandomycin) and P4502C6 (sulfinpyrazone) were not effective at 10 microM. N'HA formation by control microsomes was not prevented by any of these inhibitors. Conditions that inhibit flavin-dependent monooxygenase metabolism, methimazole (1 mM), and heat treatment (37 degrees C for 60 min) were also ineffective in preventing N'HA formation. The nonspecific cytochrome P450 inhibitor SKF-525A (10 microM) exhibited a partial dose-response inhibition (maximum 41% of complete reaction mixture) of N'HA formation, but did not alter NHA formation. In contrast, the nonspecific cytochrome P450 inhibitor, 2,4-dichloro-6-phenylphenoxyethylamine prevented formation of both N'HA and NHA. beta-Naphthoflavone treatment increased [3H]N-acetylbenzidine binding to DNA, but not [3H]N,N'-diacetylbenzidine. Binding of both compounds to DNA was inhibited by ellipticine. N'-(3'-monophospho-deoxyguanosin-8-yl)-N-acetylbenzidine was detected by 32P-postlabeling in microsomal incubations with N-acetylbenzidine, but not N,N'-diacetylbenzidine. More adduct was detected with control than beta-naphthoflavone-treated microsomes. Results are consistent with cytochrome P4501A1/1A2 playing the major role in N-acetylbenzidine and N,N'-diacetylbenzidine metabolism by liver microsomes from control and beta-naphthoflavone-treated rats. The formation of N'HA by control, but not by beta-naphthoflavone-treated, rats and its insensitivity to inhibition by cytochrome P4501A1/1A2 inhibitors were unexpected.

UI MeSH Term Description Entries
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011335 Proadifen An inhibitor of drug metabolism and CYTOCHROME P-450 ENZYME SYSTEM activity. Propyladiphenin,Diethylaminoethyldiphenylpropyl Acetate,Proadifen Hydrochloride,SK&F-525-A,SK-525A,SKF-525-A,SKF-525A,Acetate, Diethylaminoethyldiphenylpropyl,Hydrochloride, Proadifen,SK 525A,SK&F 525 A,SK&F525A,SK525A,SKF 525 A,SKF525A
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001560 Benzidines Very toxic industrial chemicals. They are absorbed through the skin, causing lethal blood, bladder, liver, and kidney damage and are potent, broad-spectrum carcinogens in most species. Bianilines,Biphenyldiamines
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D019324 beta-Naphthoflavone A polyaromatic hydrocarbon inducer of P4501A1 and P4501A2 cytochromes. (Proc Soc Exp Biol Med 1994 Dec:207(3):302-308) 5,6-Benzoflavone,5,6 Benzoflavone,beta Naphthoflavone

Related Publications

V M Lakshmi, and T V Zenser, and B B Davis
March 1983, Environmental health perspectives,
V M Lakshmi, and T V Zenser, and B B Davis
October 2001, Toxicology letters,
V M Lakshmi, and T V Zenser, and B B Davis
July 1985, Gastroenterology,
V M Lakshmi, and T V Zenser, and B B Davis
September 1998, Molecular pharmacology,
V M Lakshmi, and T V Zenser, and B B Davis
June 2006, Drug metabolism and disposition: the biological fate of chemicals,
V M Lakshmi, and T V Zenser, and B B Davis
January 1978, IARC monographs on the evaluation of the carcinogenic risk of chemicals to man,
V M Lakshmi, and T V Zenser, and B B Davis
March 2006, Acta pharmacologica Sinica,
Copied contents to your clipboard!