Depletion of glutathione in the kidney and the renal disposition of administered inorganic mercury. 1997

R K Zalups, and L H Lash
Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA.

The primary aim of the present study was to evaluate the effects of different means of depleting glutathione (GSH) in the kidneys and liver on the renal and hepatic accumulation and disposition of a nontoxic dose of inorganic mercury. Renal and hepatic disposition of mercury were evaluated 1 hr after the intravenous administration of a 0.5 mumol/kg dose of mercuric chloride in control rats and rats pretreated with acivicin, buthionine sulfoximine (BSO), or diethylmaleate (DEM). Pretreatment with acivicin or DEM caused significant decreases in the net renal accumulation of mercury during the first hour after the injection of mercuric chloride. The primary effects of these two pretreatments occurred in the renal cortex, although pretreatment with DEM also caused significant decreases in the concentration of mercury in the outer stripe of the outer medulla. Despite the fact that pretreatment with BSO caused a reduction in the renal content of GSH, comparable with that caused by DEM, pretreatment with BSO had no significant effect on the renal disposition of mercury. Pretreatment with acivicin, BSO, or DEM also caused significant decrease in measurable reduced GSH, with BSO and DEM having the most pronounced effects. Injection of the nontoxic dose of mercuric chloride after pretreatment with acivicin resulted in slightly, but significantly, decreased hepatic content of mercury. Interestingly, pretreatment with BSO or DEM actually caused significant increases in the hepatic content of mercury 1 hr after the injection of mercuric chloride. We postulate that this effect was due to a diminished ability of hepatocytes to export mercuric conjugates of GSH out into either the bile or blood. The results of this study indicate that depletion of renal GSH by conjugation reactions between GSH and DEM leads to an acute reduction in the renal accumulation of inorganic mercury. However, the results also indicate that depletion of renal levels of GSH by inhibition of GSH synthesis does not affect acutely the ability of the kidneys to accumulate inorganic mercury. Thus, it seems that factors in addition to intracellular GSH status play an important role in the renal accumulation/retention of inorganic mercury.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008628 Mercury A silver metallic element that exists as a liquid at room temperature. It has the atomic symbol Hg (from hydrargyrum, liquid silver), atomic number 80, and atomic weight 200.59. Mercury is used in many industrial applications and its salts have been employed therapeutically as purgatives, antisyphilitics, disinfectants, and astringents. It can be absorbed through the skin and mucous membranes which leads to MERCURY POISONING. Because of its toxicity, the clinical use of mercury and mercurials is diminishing.
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

R K Zalups, and L H Lash
January 1995, Toxicology and applied pharmacology,
R K Zalups, and L H Lash
April 1995, Journal of toxicology and environmental health,
R K Zalups, and L H Lash
October 1985, Fundamental and applied toxicology : official journal of the Society of Toxicology,
R K Zalups, and L H Lash
April 1995, Journal of toxicology and environmental health,
R K Zalups, and L H Lash
October 2002, Journal of toxicology and environmental health. Part A,
R K Zalups, and L H Lash
September 2015, Toxicology,
Copied contents to your clipboard!