Effects of creatine loading and training on running performance and biochemical properties of rat skeletal muscle. 1997

T A Brannon, and G R Adams, and C L Conniff, and K M Baldwin
Department of Physiology and Biophysics, University of California, Irvine 92717, USA.

Several reports have shown that the use of oral creatine (Cr) supplementation can increase performance during brief high intensity exercise in humans. The purpose of this study was to examine the separate and combined effects of Cr supplementation and high intensity run training on the performance capacity and biochemical properties of rodent skeletal muscle. Running performance was assessed following acute (10-d) and chronic (4-wk) Cr supplementation. Results indicate that Cr supplementation alone has ergogenic effects and the combination of run training plus Cr results in a more pronounced enhancement of performance than either intervention alone. The benefits of Cr supplementation were seen most clearly during repetitive bouts of high intensity interval running. Cr concentrations increased in both the slow soleus and fast plantaris muscles (P < 0.05) in response to Cr supplementation. Increased creatine concentrations appeared to be reflected in increased phosphorylated creatine (PCr). Citrate synthase (CS) activity was increased in both the soleus and plantaris muscles following training (P < 0.05). CS activity of the untrained soleus but not the plantaris responded to the dietary stimulus. There were no significant changes in either creatine phosphokinase activity or myosin heavy chain isoform distribution following training or supplementation. These results indicate that the gains in high intensity running performance seen following Cr loading are a combined result of increased aerobic (CS) and anaerobic (Cr and PCr) energy buffering capacity of the muscle.

UI MeSH Term Description Entries
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D010805 Physical Conditioning, Animal Diet modification and physical exercise to improve the ability of animals to perform physical activities. Animal Physical Conditioning,Animal Physical Conditionings,Conditioning, Animal Physical,Conditionings, Animal Physical,Physical Conditionings, Animal
D002950 Citrate (si)-Synthase Enzyme that catalyzes the first step of the tricarboxylic acid cycle (CITRIC ACID CYCLE). It catalyzes the reaction of oxaloacetate and acetyl CoA to form citrate and coenzyme A. This enzyme was formerly listed as EC 4.1.3.7. Citrate Synthase,Synthase, Citrate
D003401 Creatine An amino acid that occurs in vertebrate tissues and in urine. In muscle tissue, creatine generally occurs as phosphocreatine. Creatine is excreted as CREATININE in the urine.
D003402 Creatine Kinase A transferase that catalyzes formation of PHOSPHOCREATINE from ATP + CREATINE. The reaction stores ATP energy as phosphocreatine. Three cytoplasmic ISOENZYMES have been identified in human tissues: the MM type from SKELETAL MUSCLE, the MB type from myocardial tissue and the BB type from nervous tissue as well as a mitochondrial isoenzyme. Macro-creatine kinase refers to creatine kinase complexed with other serum proteins. Creatine Phosphokinase,ADP Phosphocreatine Phosphotransferase,ATP Creatine Phosphotransferase,Macro-Creatine Kinase,Creatine Phosphotransferase, ATP,Kinase, Creatine,Macro Creatine Kinase,Phosphocreatine Phosphotransferase, ADP,Phosphokinase, Creatine,Phosphotransferase, ADP Phosphocreatine,Phosphotransferase, ATP Creatine
D004032 Diet Regular course of eating and drinking adopted by a person or animal. Diets
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

T A Brannon, and G R Adams, and C L Conniff, and K M Baldwin
October 2002, Clinical and experimental pharmacology & physiology,
T A Brannon, and G R Adams, and C L Conniff, and K M Baldwin
September 2000, The Biochemical journal,
T A Brannon, and G R Adams, and C L Conniff, and K M Baldwin
February 2005, International journal of sport nutrition and exercise metabolism,
T A Brannon, and G R Adams, and C L Conniff, and K M Baldwin
December 1987, Medicine and science in sports and exercise,
T A Brannon, and G R Adams, and C L Conniff, and K M Baldwin
July 2010, Journal of strength and conditioning research,
T A Brannon, and G R Adams, and C L Conniff, and K M Baldwin
August 2007, Life sciences,
T A Brannon, and G R Adams, and C L Conniff, and K M Baldwin
May 2002, Nutrition (Burbank, Los Angeles County, Calif.),
T A Brannon, and G R Adams, and C L Conniff, and K M Baldwin
January 1997, Acta physiologica, pharmacologica et therapeutica latinoamericana : organo de la Asociacion Latinoamericana de Ciencias Fisiologicas y [de] la Asociacion Latinoamericana de Farmacologia,
T A Brannon, and G R Adams, and C L Conniff, and K M Baldwin
April 2008, American journal of physiology. Regulatory, integrative and comparative physiology,
T A Brannon, and G R Adams, and C L Conniff, and K M Baldwin
July 2003, Exercise and sport sciences reviews,
Copied contents to your clipboard!